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Abstract— In this paper, we investigate the problem of
aggregating a given finite-state Markov process by another
process with fewer states. The aggregation utilizes total vari-
ation distance as a measure of discriminating the Markov
process by the aggregate process, and aims to maximize the
entropy of the aggregate process invariant probability, subject
to a fidelity described by the total variation distance ball.
An iterative algorithm is presented to compute the invariant
distribution of the aggregate process, as a function of the
invariant distribution of the Markov process. It turns out that
the approximation method via aggregation leads to an optimal
aggregate process which is a hidden Markov process, and
the optimal solution exhibits a water-filling behavior. Finally,
the algorithm is applied to specific examples to illustrate the
methodology and properties of the approximations.

I. INTRODUCTION

Finite-state Markov processes are often employed to model
physical phenomena in many diverse areas, such as machine
learning, information theory (lossy compression), speech
processing and system biology. However, in many such
applications, the state space of the Markov chains are pro-
hibitively large, for performing simulations or training of
the models. One approach to overcome the large number
of states is to approximate the Markov chain by a lower
dimensional Markov chain, with respect to certain measures
of discrepancy, or to approximate the distribution of the high
dimensional Markov chain by a reduced dimensional Markov
Chain. Such methods are described using relative entropy
as a measure of approximation in [1]–[3] (and references
therein). In these papers, the assumption often imposed is
that the approximating process is also a Markov process.
However, from lossy compression of Markov sources in
Information Theory [4], it is already known that the approx-
imating process subject to a fidelity of reproduction is not
Markov, but it is a hidden Markov process.

In this paper, motivated by information theoretic lossy
compression techniques, we propose an alternative methodol-
ogy to approximate finite-state Markov processes by reduced
state aggregate processes, without a priori imposing the
assumption that the approximating process is also a Markov
process. As a measure of fidelity or discrepancy metric
between the Markov process and the aggregate process
we use the total variation distance between their invariant
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distributions. Then, we formulate the approximation prob-
lem, we discuss the optimal solution, and we present an
iterative algorithm to compute the invariant distribution of the
aggregate process, including specific examples to illustrate
the concepts. The formulation is based on maximizing the
entropy (Jayne’s maximum entropy [5]) of the invariant
distribution of the lower dimensional process, subject to a fi-
delity criterion defined by the total variation distance metric,
between the invariant distributions of the higher dimensional
Markov process and that of the lower dimensional process.

This specific formulation leads to an optimal approxima-
tion algorithm described via aggregation of the states (i.e.,
by grouping certain states of the original Markov process)
to obtain the approximating reduced state process, which
is indeed a hidden Markov process. This formulation is
equivalent to finding the minimum description length [6]
of the aggregate process, and it is related to minimizing
the average code word length of approximating the Markov
process, subject to a fidelity criterion.

The main contributions of this paper are the following:

1) an iterative algorithm to compute the invariant distri-
bution of the aggregate process;

2) extremum measures which exhibit a water-filling be-
havior and solve the approximation problem;

3) examples which illustrate the methodology and the
properties of the approximation.

The paper is organized as follows. Section II presents
the mathematical formulation as an optimization problem.
Section III presents the solution of the optimization problem.
Section IV presents examples illustrating the approximation
methodology. Finally, Section V concludes by discussing the
most important results obtained in this paper.

II. PROBLEM FORMULATION

A. Description of the problem

Consider a discrete-time homogeneous Markov process
{Xt : t = 0, 1, . . .} with state-space X of finite cardinality
|X | = N , and transition probability matrix P with elements
{pij : i, j = 1, . . . , N} defined by

pij
4
= P(Xt+1 = j|Xt = i), i, j ∈ X , t = 0, 1, . . . .

(1)
The Markov process is assumed to be irreducible, aperiodic
having a unique invariant distribution µ = [µ1 µ2 . . . µN ]
satisfying

µ = µP. (2)



The objective is to approximate the Markov process {Xt :
t = 0, 1, . . . , } by another, not necessarily Markov process
{Yt : t = 0, 1, . . . , } with finite-state space Y ⊆ X of
finite cardinality |Y| = M ≤ |X | = N , and invariant
distribution ν = [ν1 ν2 . . . νM ], with respect to an appropriate
measure of proximity between the original Markov process
{Xt : t = 0, 1, . . . , } and the approximating process {Yt :
t = 0, 1, . . . , }, called the discrepancy measure. We consider
the total variation distance between two distributions as a
measure of discrepancy, and the entropy as a pay-off of
grading the performance of the approximation. Depending
on the nature of the approximation, one may also invoke
other pay-off functionals. Note that, we do not impose any
assumption on the approximating process to be a Markov
process.

B. Motivation of total variation distance as a measure of
discrepancy

Related work on approximating a Markov process by a
lower dimensional Markov process [1]–[3], utilizes relative
entropy distance (or Kullback-Leibler distance) as a measure
of approximation. Below, we summarize the reasons which
motivated us to employ total variation distance as a measure
of approximation between the invariant distributions of the
high dimensional Markov process and the lower dimensional
process.

Let (Σ, dΣ) denote a complete, separable metric space and
(Σ,B(Σ)) the corresponding measurable space, where B(Σ)
is the σ-algebra generated by open sets in Σ. Let M1(Σ)
denote the set of probability measures on B(Σ).

1) Relative Entropy distance: [7] The relative entropy
of α ∈ M1(Σ) with respect to β ∈ M1(Σ) is a mapping
D(α||β) :M1(Σ)×M1(Σ) −→ [0,∞] defined by

D(α||β),


∫

Σ
log(α(dx)

β(dx) )α(dx) if log(αβ )∈L1(α)

and α<<β,
+∞ otherwise.

(3)

where α << β denotes absolute continuity of α ∈ M1(Σ)
with respect to β ∈ M1(Σ).1 It is well known that
D(α||β) ≥ 0,∀α, β ∈ M1(Σ), while D(α||β) = 0 ⇔ α =
β, a.e..

2) Total variation distance: [8], [9] The total variation
distance is a metric, || · ||TV : M1(Σ) ×M1(Σ) → [0,∞)
defined by

||α− β||TV , sup
P∈P(Σ)

∑
Fi∈P

|α(Fi)− β(Fi)|, (4)

where α, β ∈ M1(Σ) and P(Σ) denotes the collection of
all finite partitions of Σ. Given a probability measure µ ∈
M1(Σ) define the fidelity set via the ball, with respect to
the variation distance, centered at the measure µ ∈M1(Σ),
having radius R ∈ [0, 2], by

BR(β)
4
=
{
α ∈M1(Σ) : ||α− β||TV ≤ R

}
. (5)

1If β(A) = 0 for some measurable set A then α(A) = 0.

The two extreme cases are R = 0 implying α = β, a.e., and
R = 2 implying that the support sets of α and β denoted by
supp(α) and supp(β), respectively, are non-overlapping, that
is, supp(α)∩supp(β) = ∅. One of the most interesting prop-
erties of total variation distance ball is that any admissible
ν ∈ BR(µ) may not be absolutely continuous with respect to
µ. Consequently, any approximating distribution ν ∈ BR(µ)
can be defined on a smaller alphabet than distribution µ, that
is, supp(ν) ⊆ supp(µ). By Pinsker’s inequality, distance in
total variation of probability measures is a lower bound on
relative entropy distance, that is,

||α− β||TV ≤
√

2D(α||β), α, β ∈M1(Σ). (6)

Hence, for any fixed β ∈ M1(Σ) then {α ∈ M1(Σ) :
D(α||β) ≤ r2/2} ⊆ Br(β).

This means that even for those measures which satisfy
α << β, the set described by relative entropy is a subset
of the much larger total variation distance set. Moreover,
by the definition of relative entropy (3), for any finite r ∈
[0,∞], and fixed β ∈ M1(Σ), any set described by relative
entropy consists of only those measures α ∈M1(Σ) which
are absolutely continuous with β ∈ M1(Σ). This property
of relative entropy rules out the possibility of measures α ∈
M1(Σ) and β ∈ M1(Σ) to be defined on different state-
spaces. It is one of the main disadvantages of employing
relative entropy as a measure of approximation between a
high dimensional Markov process and a lower dimensional
process. An alternative, is to use a partition function to lift the
lower dimensional process to the state-space of the original
Markov process; however the drawback of this approach lies
in assuming a partition function [3].

Motivated by the above issues, the approximation method
proposed in this paper is based on total variation distance
as a measure of discriminating the Markov process and the
approximated process.

C. Aggregation based on maximum entropy principle

Consider the finite alphabet case (Σ,M), with cardinality
|Σ|, M = 2|Σ|. Thus, ν and µ are point mass distributions
on Σ. Define the set of probability vectors on Σ by

P(Σ)
4
=
{
p = (p1, . . . , p|Σ|) : pi ≥ 0, i ∈ Σ,

∑
i∈Σ

pi = 1
}
.

Thus, p ∈ P(Σ) is a probability vector in R|Σ|+ . Also, let

`
4
= {`1, . . . , `|Σ|} ∈ R|Σ|+ (e.g., set of non-negative vectors

of dimension |Σ|).
Given the invariant distribution µ ∈ P(Σ) and a parameter

R ∈ [0, 2] define the average pay-off with respect to the
stationary distribution {νi : i ∈ Σ} ∈ BR(µ) ⊂ P(Σ) by

L(ν) =
∑
i∈Σ

`iνi, ` ∈ R|Σ|+ . (7)

The objective is to approximate µ ∈ P(Σ) by ν ∈ BR(µ) by
solving the maximization problem defined by

L(ν∗) = max
ν∈BR(µ)

µ=µP

L(ν), ∀R ∈ [0, 2]. (8)



Problem (8) is a non-decreasing concave function of R, and
for R ≤ Rmax the inequality constraint holds with equality,
where Rmax is defined later and is the smallest non-negative
number belonging to [0, 2] such that L(ν∗) is constant in
[Rmax, 2] (for more details see [14]). Hence, Problem (8) is
a convex optimization problem on the space of probability
measures. The solution of (8) is obtained by choosing the
parameters `i , − log νi, ∀i ∈ Σ, hence optimization (8) be-
comes equivalent to the problem of finding the approximating
distribution corresponding to the minimum description code
word length [6].

Consider Jayne’s maximum entropy principle; then, the
approximation problem can be formulated as follows: max-
imize the entropy of {νi : i ∈ Σ} subject to total variation
fidelity set, defined by

max
ν∈BR(µ)

µ=µP

H(ν), H(ν)
4
= −

∑
i∈Σ

log(νi)νi (9)

Problem (9) is of interest when the concept of insufficient
reasoning (e.g., Jayne’s maximum entropy principle2 [5])
is applied to construct a model for ν ∈ P(Σ), subject to
information quantified via the fidelity set defined by the
variation distance between ν and µ.

It is not difficult to show that the maximum entropy
approximation problem (9) is precisely equivalent to the
problem of finding the approximating distribution corre-
sponding to the minimum description code word length, also
called as universal coding problem [6], [15], as follows. Let
{`i : i ∈ Σ} denote the positive codeword lengths corre-
sponding to each symbol of the approximating distribution,
which satisfy the Kraft inequality of lossless Shannon codes∑
i∈ΣD

−`i ≤ 1, where the code word alphabet is D-ary

(unless specified otherwise log(·) 4= logD(·)). Then, by the
Von-Neumann’s theorem, which holds due to compactness
and convexity of the constraints, we have that

min
`∈R|Σ|+ :

∑
i∈Σ D

−`i≤1

max
ν∈BR(µ)

µ=µP

∑
i∈Σ

`iνi

= max
ν∈BR(µ)

µ=µP

min
`∈R|Σ|+ :

∑
i∈Σ D

−`i≤1

∑
i∈Σ

`iνi = max
ν∈BR(µ)

µ=µP

H(ν).

Hence, for `i
4
= − log νi, ∀i ∈ Σ, the optimization (8) is

equivalent to optimization (9).

III. SOLUTION OF THE AGGREGATION PROBLEM

We draw upon the results of [14] to find the solution of
optimization (8), and consequently the solution of (9). First,
we identify the support sets and their corresponding values.

Define the maximum and minimum values of the sequence
{`1, . . . , `|Σ|} ∈ R|Σ|+ by `max , maxi∈Σ `i, `min ,
mini∈Σ `i, and its corresponding support sets by

Σ0 , {i ∈ Σ : `i=`max}, Σ0 , {i ∈ Σ : `i=`min}. (10)

2The maximum entropy principle states that, subject to precisely stated
prior data, the probability distribution which best represents the current state
of knowledge is the one with largest entropy.

For all remaining elements of the sequence, {`i : i ∈ Σ\Σ0∪
Σ0}, define recursively the set of indices for which ` achieves
its (k+ 1)st smallest value by Σk, where k ∈ {1, 2, . . . , |Σ\
Σ0 ∪Σ0|}, till all the elements of Σ are exhausted (i.e., k is
at most |Σ \Σ0 ∪Σ0|), and the corresponding values of the
sequence on the Σk sets by `(Σk).

For ` ∈ RΣ
+, and µ ∈ P(Σ), it is shown in [14], that the

solution of optimization (8) is given by

L(ν∗)=`maxν
∗(Σ0)+`minν

∗(Σ0)+

r∑
k=1

`(Σk)ν∗(Σk) (11)

where r is the number of Σk sets which is at most |Σ\Σ0∪
Σ0|. Moreover, the optimal probabilities are obtained via a
water-filling solution, as follows

ν∗(Σ0),
∑
i∈Σ0

ν∗i =
∑
i∈Σ0

µi +
α

2
, (12a)

ν∗(Σ0),
∑
i∈Σ0

ν∗i =
( ∑
i∈Σ0

µi −
α

2

)+

, (12b)

ν∗(Σk),
∑
i∈Σk

ν∗i =
( ∑
i∈Σk

µi−
(α

2
−

k∑
j=1

∑
i∈Σj−1

µi

)+)+

, (12c)

α = min (R,Rmax) , Rmax
4
= 2(1−

∑
i∈Σ0

µi), (12d)

where k = 1, 2, . . . , r.
The optimal probabilities (12a)-(12c), can be expressed in

matrix form by

ν∗ = µQ (13)

where ν∗ , [ν∗1 ν∗2 . . . ν∗N ] denotes the invariant distri-
bution of the process {Yt, t = 0, 1, . . .}, and the dimensions
of Q matrix depends on the value of total variation parameter
R. In Section III-A, we provide a technique for constructing
the desired Q matrix for optimization (9).

Remark III.1 Note that this reduction can be made for a
state of the distribution of the Markov process (instead of
the invariant distribution), given that R is provided, i.e.,

P(Y (t)=j) =

N∑
i=1

P(Y (t)=j|X(t)=i)P(X(t)=i) (14)

By denoting µ(t) , P(X(t) = i) and ν(t) , P (Y (t) = j)
we have

ν(t+ 1) = µ(t+ 1)Q = µ(t)PQ = µ(0)P tQ, (15)

where the resulting stochastic matrix PQ gives the probabil-
ity P(Y (t+1) = j) of the hidden process {Yt, t = 0, 1, . . .},
given the state of the distribution of the Markov process
{Xt, t = 0, 1, . . .} at time t. The dimension of the mapping
PQ, which relates the hidden process {Yt, t = 0, 1, . . .}
to the Markov process {Xt, t = 0, 1, . . .}, depends on the
value of the parameter R. As a result, once the mapping
PQ is computed, the state of the approximating process can
be computed by (15). This can be useful when we want to
observe the evolution of a reduced set of symbols instead of
the state sequence of the original Markov process.



A. The Q matrix of optimization (9)

Here, we give an algorithm to construct the Q matrix for
solving optimization (9). Before giving the algorithm, we
introduce some notation.

Let r denote the number of Σk sets, that is, 1 ≤ r ≤
|Σ \ Σ0 ∪ Σ0| (note that, set Σ0 is excluded). Furthermore,
let r+ and r− denote the number of µi, i ∈ Σ, such that
µi ≥ 1

|Σ| and µi < 1
|Σ| , respectively, and in addition µi 6= µj

for all i 6= j, i, j ∈ Σ.

Remark III.2 The initialization step of Algorithm III.3 is
performed by letting R = 0. In this case, νi = µi, for all
i ∈ Σ, and hence, `i , − log νi = − logµi.

Algorithm III.3
1) Initialization step:

a) Arrange µi, i ∈ Σ, in a descending order and let
R = 0.

b) Identify the support sets Σ0, Σ0 and Σk for all
k ∈ {1, 2, . . . , |Σ \ Σ0 ∪ Σ0|}.

c) Calculate the value of r, r− and r+.
For any R ∈ [0, 2]:
2) Step.1 (Indicator functions):

a) For k = 1, 2 . . . , r−−1 let

µR−(Σk) ,

∑
i∈∪k−1

j=0 Σj
µi −R/2∑k−1

j=0 |Σj |
.

Define

IΣk
− ,

{
1 if µR−(Σk) ≤

∑
i∈Σk

µi

|Σk| ,

0 otherwise.
(16)

For k = r− let

µR−(Σr−) ,

∑
i∈∪r−−1

j=0 Σj
µi −R/2∑r−−1

j=0 |Σj |
.

Define

I
Σr−
− ,

{
1 if µR−(Σr−) ≤ 1

|Σ| ,

0 otherwise.
(17)

b) For k = 1, 2 . . . , r+−1 let

µR+(Σk) ,

∑
i∈Σ\∪k−1

j=rΣr−j
µi +R/2

|Σ \ ∪k−1
j=rΣr−j |

,

Define

IΣk
+ ,

 1 if µR+(Σk) ≥
∑
i∈Σr−k+1

µi

|Σr−k+1| ,

0 otherwise.
(18)

For k = r+ let

µR+(Σr+) ,

∑
i∈Σ\∪r+−1

j=r Σr−j
µi + R

2

|Σ \ ∪r+−1
j=r Σr−j |

.

Define

I
Σr+
+ ,

{
1 if µR+(Σr+) ≥ 1

|Σ| ,

0 otherwise.
(19)

3) Step.2 (The Q† matrix):
Let Q† be an (|Σ|)× (2 + r) matrix.

a) The elements of the first column are given as
follows.
i) For all i ∈ Σ0, let the (Q†)i,1 be equal to

1−R/2
|Σ0|+

∑r↓−1
j=1 I

Σj
− |Σj |

(
I

Σr−
−

)c
+
I

Σr−
−
|Σ|

. (20)

ii) For all i ∈ Σk, k = 1, 2, . . . , r−−1, let the
(Q†)i,1 be equal to

IΣk
− −R/2

|Σ0|+
∑r↓−1
j=1 I

Σj
− |Σj |

(
I

Σr−
−

)c
+
I

Σr−
−
|Σ|

. (21)

iii) Let all the remaining elements be equal to

−R/2
|Σ0|+

∑r↓−1
j=1 I

Σj
− |Σj |

(
I

Σr−
−

)c
+
I

Σr−
−
|Σ|

. (22)

b) The elements of the last column are given by
i) For all i ∈ Σ0, let the (Q†)i,r+2 be equal to

1 +R/2

|Σ0|+
∑r↑−1
j=1 I

Σj
+ |Σr−j+1|

(I
Σr+
+ )c. (23)

ii) For all i ∈ Σr−k+1, k = 1, 2, . . . , r↑ − 1 let
the (Q†)i,r+2 be equal to

IΣk
+ +R/2

|Σ0|+
∑r↑−1
j=1 I

Σj
+ |Σr−j+1|

(I
Σr+
+ )c. (24)

iii) Let all the remaining elements be equal to
R/2

|Σ0|+
∑r↑−1
j=1 I

Σj
+ |Σr−j+1|

(I
Σr+
+ )c. (25)

c) The elements of all remaining columns are given
by
i) For all i ∈ Σk, k = 1, 2, . . . , r−−1 let

(Q†)i,z =
(IΣk
− )c

|Σk|
, (26)

where z = 1 + k denotes the zth column. Let
all the remaining elements of the zth column
be equal to zero. However, if IΣk

− = 1, then let
all the elements of the zth column be equal
with the corresponding elements of the first
column, that is,

(Q†)1,z = (Q†)1,1, (Q
†)2,z = (Q†)2,1, . . . ,

(Q†)|Σ|,z = (Q†)|Σ|,1. (27)

ii) For all i ∈ Σr−k+1, k = 1, 2, . . . , r+−1 let

(Q†)i,z =
(IΣk

+ )c

|Σk|
, (28)

where z = r+ 2− k denotes the zth column.
Let all the remaining elements of the zth
column be equal to zero. However, if IΣk

+ = 1,
then let all the elements of the zth column be
equal with the corresponding elements of the
last column, that is,



(Q†)1,z = (Q†)1,|Σ|, (Q
†)2,z = (Q†)2,|Σ|, . . . ,

(Q†)|Σ|,z = (Q†)|Σ|,|Σ|. (29)

4) Step.4:
If any of the columns of matrix Q† are equal, then
merge them by adding them. Matrix Q is defined to be
the matrix after the merging of all equal columns.

IV. EXAMPLES

A. Example illustrating Algorithm III.3

Here, we provide an example in order to explain each
step of Algorithm III.3, which is to be implemented for the
optimal solution of approximation problems based on relative
entropy.

Let µ = [µ1 µ2 µ3 µ4], where µ1 > µ2 > µ3 > µ4, and
also assume that µ1 > µ2 >

1
|Σ| and µ4 < µ3 <

1
|Σ| , where

|Σ| = 4. For simplicity of presentation, it is assumed that
the optimum probabilities ν∗i , i ∈ Σ, as a function of R are
known and they are given by Fig.1.

Initialization step. For R = 0, and from Remark III.2, we
conclude that `1 < `2 < `3 < `4, and therefore the support
sets are equal to Σ0 = {4}, Σ0 = {1}, Σ1 = {2} and
Σ2 = {3}. The number of the Σk sets is equal to r = 2.
The number of µi, i ∈ Σ, which are greater (or equal) than
1
|Σ| = 0.25 (and also µi 6= µj , i, j ∈ Σ) is r− = 2. Similarly,
the number of µi which are strictly smaller than 1

|Σ| = 0.25

(and also not equal to each other) is also r+ = 2.
Step.1 From (16)-(17), the indicator functions IΣ1

− and IΣ2
−

are given by

IΣ1
− ,

{
1 if µ1−R2≤µ2,
0 otherwise,

IΣ2
− ,

{
1 if µ1+µ2−R2

2 ≤0.25,
0 otherwise,

and from (18)-(19), the indicator functions IΣ1
+ and IΣ2

+ are
given by

IΣ1
+ ,

{
1 if µ4+R

2≥µ3,
0 otherwise,

IΣ2
+ ,

{
1 if µ3+µ4+R

2

2 ≥0.25,
0 otherwise.

The behavior of the indicator functions for values of R ∈
[0, 2] is as shown in Fig.1. For 0 ≤ R < R1, that is, before
a merge occurs, all indicator functions are equal to zero. If a
merge occurs the respective indicator function becomes equal
to one, until for some R ≥ R2, where all indicator functions
are equal to one.

Step.2 Let Q be an 4× 4 matrix. For 0 ≤ R < R1,

Q† =


1−R/2 0 0 R/2
−R/2 1 0 R/2
−R/2 0 1 R/2
−R/2 0 0 1 +R/2


and since no equal columns exist then Q = Q†. For R1 ≤
R < R2,

Q† =


1−R/2

2
1−R/2

2 R/4 R/4
1−R/2

2
1−R/2

2 R/4 R/4

−R/4 −R/4 1+R/2
2

1+R/2
2

−R/4 −R/4 1+R/2
2

1+R/2
2

 .

and hence

Q =


1−R/2 R/2
1−R/2 R/2
−R/2 1 +R/2
−R/2 1 +R/2

 .

For R ≥ R2,

Q† =


0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25

 =⇒ Q =


1
1
1
1

 .

Note that, the dimension of matrix Q is based on the value
of total variation distance parameter R. For 0 < R ≤ R1 its
dimension is equal to |X |× (2 + r). Whenever two columns
become equal (that is, an indicator function is activated) they
are merged, until for some R ≥ R2, where matrix Q is
transformed into column vector of dimension |X | × 1. Once
matrix Q is constructed, as a function of parameter R, then
by (13) the solution of optimization (9) is readily available.
Moreover, by Remark (III.1), the probability mass flow from
the original Markov chain to the hidden Markov chain is also
readily available, as we show next.
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Fig. 1. Optimal Probabilities as a function of R.

B. An illustrative example of Markov chain approximation
with a large number of states

Consider a 30-state Markov chain, whose transition prob-
ability matrix is given by Fig.2(a). By employing Algorithm
III.3, we solve the approximation problem based on entropy
principle.

Fig.2(b)-(e) depicts the probability mass flow from the
original Markov chain to the hidden Markov chain for some
preselected values of R, in which the color of the ith row
and jth column, as indicated by the color bar, represent the
(PQ)i,j matrix. In particular, Fig.2(b), 2(c), 2(d) and 2(e)
depict a 25, 21, 13 and a 5-state approximation, respectively.
Fig.2(f) depicts the water-filling behavior of the optimal
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Fig. 2. Approximation results based on entropy principle of a 30-state Markov chain: Plot (a) depicts the P matrix of the original Markov
chain. Plots (b)-(e) depict a 25, 21, 13 and a 5-state approximation. Plot (f) depicts the optimal probabilities ν∗ as a function of total
variation distance.

probabilities ν∗ as a function of the total variation parameter
R. In summary, the solution of approximation problem based
on entropy principle is described via aggregation of states,
that is, by grouping certain states of the original Markov
chain to obtain the approximating hidden Markov chain.

V. CONCLUSIONS

In this work, we studied the problem of aggregating a
Markov process with a large number of states by another
process with fewer states. The total variation distance is
introduced as a discrepancy measure, and the problem is
formulated by maximizing the entropy of the approximating
steady state distribution, subject to a constraint on the
total variation distance metric, between the steady state
distribution of the original Markov process and that of the
approximating process. An iterative algorithm is proposed to
approximate Markov processes by another process. It shown
that the solution exhibits water-filling, and that the proposal
aggregation approach ensures that the resulting process is a
hidden Markov process.
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