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Abstract. There are several results on the stability of nonlinear positive systems in the presence
of time delays. However, most of them assume that the delays are constant. This paper considers
time-varying, possibly unbounded, delays and establishes asymptotic stability and bounds the decay
rate of a significant class of nonlinear positive systems which includes positive linear systems as a
special case. Specifically, we present a necessary and sufficient condition for delay-independent sta-
bility of continuous-time positive systems whose vector fields are cooperative and homogeneous. We
show that global asymptotic stability of such systems is independent of the magnitude and variation
of the time delays. For various classes of time delays, we are able to derive explicit expressions that
quantify the decay rates of positive systems. We also provide the corresponding counterparts for
discrete-time positive systems whose vector fields are nondecreasing and homogeneous.
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1. Introduction. Many real-world processes in areas such as economics, biology,
ecology, and communications deal with physical quantities that cannot attain nega-
tive values. The state trajectories of dynamical models characterizing such processes
should thus be constrained to stay within the positive orthant. Such systems are com-
monly referred to as positive systems [41, 11, 18]. Due to their importance and broad
applications, a large body of literature has been concerned with the analysis and con-
trol of positive systems (see, e.g., [22, 44, 45, 24, 1, 37, 30, 34, 10, 23, 38, 43, 14, 25, 5]
and references therein).

In distributed systems where exchange of information is involved, delays are in-
evitable. For this reason, a considerable effort has been devoted to characterizing the
stability and performance of systems with delays (see, e.g., [19, 15, 46, 16, 20, 35, 40]
and references therein). Recently, the stability of delayed positive linear systems has
received significant attention [17, 32, 28, 36, 29] and it has been shown that such
systems are insensitive to certain classes of time delays, in the sense that a positive
linear system with time delays is asymptotically stable if the corresponding delay-free
system is asymptotically stable. This is a surprising property, since the stability of
general dynamical systems typically depends on the magnitude and variation of the
time delays.

While the asymptotic stability of positive linear systems in the presence of time
delays has been thoroughly investigated, the theory for nonlinear positive systems is
considerably less well-developed (see, e.g., [17] and [31, 4] for exceptions). In particu-
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2624 FEYZMAHDAVIAN, CHARALAMBOUS, AND JOHANSSON

lar, [31] showed that the asymptotic stability of a particular class of nonlinear positive
systems whose vector fields are cooperative and homogenous of degree zero does not
depend on the magnitude of constant delays. A similar result for cooperative systems
that are homogeneous of any degree was given in [4], also under the assumption of
constant delays. Extensions of these results to time-varying delays are, however, not
trivial. The main reason for this is that the proof technique in [31, 4] relies on a fun-
damental monotonicity property of trajectories of cooperative systems, which does
not hold when the delays are time-varying. To the best of our knowledge, there have
been rather few studies on stability of nonlinear positive systems with time-varying
delays (see, e.g., [33, 13]).

At this point, it is worth noting that the results for positive linear systems cited
above consider bounded delays. However, in some cases, it is not possible to a priori
guarantee that the delays will be bounded, but the state evolution might be affected
by the entire history of states. It is then natural to ask if the insensitivity properties
of positive linear systems with respect to time delays will hold also for unbounded
delays. In [26], it was shown that, for a particular class of unbounded delays, this
is indeed the case. Extensions of this result to more general classes of unbounded
delays were given in [42, 12] for continuous- and discrete-time positive linear systems,
respectively. However, [26, 42, 12] did not quantify how various bounds on the delay
evolution impact the decay rate of positive linear systems.

This paper establishes delay-independent stability of a class of nonlinear positive
systems, which includes positive linear systems as a special case, and allows for time-
varying, possibly unbounded, delays. The proof technique, which uses neither the
Lyapunov–Krasovskii functional method widely used to analyze positive systems with
constant delays [17] nor the approach used in [31, 4], allows us to impose minimal
restrictions on the delays. Specifically, we make the following contributions:

1. We derive a set of necessary and sufficient conditions for delay-independent
global stability of (i) continuous-time positive systems whose vector fields are coop-
erative and homogeneous of arbitrary degree and (ii) discrete-time positive systems
whose vector fields are nondecreasing and homogeneous of degree zero. We demon-
strate that such systems are insensitive to a general class of time delays which includes
bounded and unbounded time-varying delays.

2. When the asymptotic behavior of the time delays is known, we obtain condi-
tions to ensure global μ-stability in the sense of [7]. These results allow us to quantify
the decay rates of positive systems for various classes of (possibly unbounded) time-
varying delays.

3. For bounded delays and a particular class of unbounded delays, we present
explicit bounds on the decay rates. These bounds quantify how the magnitude of
bounded delays and the rate at which the unbounded delays grow large affect the
decay rate.

4. We also show that discrete-time positive systems whose vector fields are
nondecreasing and homogeneous of degree greater than zero are locally asymptotically
stable under delay-independent global stability conditions that we have derived.

The remainder of the paper is organized as follows. In section 2, we introduce the
notation and review some preliminaries that are essential for the development of the
results in this paper. Our main results for continuous- and discrete-time nonlinear
positive systems are stated in sections 3 and 4, respectively. An illustrative example,
justifying the validity of our results, is presented in section 5. Finally, concluding
remarks are given in section 6.
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HOMOGENEOUS POSITIVE SYSTEMS WITH DELAYS 2625

2. Notation and preliminaries.

2.1. Notation. Vectors are written in bold lower case letters and matrices in
capital letters. We let R, N, and N0 denote the set of real numbers, natural numbers,
and the set of natural numbers including zero, respectively. The nonnegative orthant
of the n-dimensional real space R

n is represented by R
n
+. The ith component of a

vector x ∈ R
n is denoted by xi, and the notation x ≥ y means that xi ≥ yi for all

components i. If v is a vector in R
n, the notation v > 0 indicates that all components

of v are positive. Given a vector v > 0, the weighted l∞ norm is defined by

‖x‖v∞ = max
1≤i≤n

|xi|
vi

.

For a matrix A ∈ R
n×n, aij denotes the real-valued entry in row i and column j.

A matrix A ∈ R
n×n is said to be nonnegative if aij ≥ 0 for all i and j. It is called

Metzler if aij ≥ 0 for all i �= j. Given an n-tuple r = (r1, . . . , rn) of positive real
numbers and λ > 0, the dilation map δrλ(x) : R

n → R
n is given by

δrλ
(
x
)
=
(
λr1x1, . . . , λ

rnxn

)
.

If r = (1, . . . , 1), the dilation map is called the standard dilation map. For a real
interval [a, b], C([a, b],Rn

)
denotes the space of all real-valued continuous functions

on [a, b] taking values in R
n. The upper-right Dini-derivative of a continuous function

h : R → R at t = t0 is defined by

D+h(t)
∣∣
t=t0

= lim
Δ→0+

sup
h(t0 +Δ)− h(t0)

Δ
,

where Δ → 0+ means that Δ approaches zero from the right-hand side.

2.2. Preliminaries. Next, we review the key definitions and results necessary
for developing the main results of this paper. We start with the definition of cooper-
ative vector fields.

Definition 2.1. A continuous vector field f : Rn → R
n which is continuously

differentiable on R
n\{0} is said to be cooperative if the Jacobian matrix ∂f/∂x is

Metzler for all x ∈ R
n
+\{0}.

Cooperative vector fields satisfy the following property.
Proposition 2.2 (see [41, Remark 3.1.1]). Let f : Rn → R

n be cooperative. For
any two vectors x and y in R

n
+\{0} with xi = yi and x ≥ y, we have fi(x) ≥ fi(y).

The following definition introduces homogeneous vector fields.
Definition 2.3. For any p ≥ 0, the vector field f : Rn → R

n is said to be
homogeneous of degree p with respect to the dilation map δrλ(x) if

f
(
δrλ(x)

)
= λpδrλ

(
f(x)

) ∀x ∈ R
n, ∀λ > 0.

Finally, we define nondecreasing vector fields.
Definition 2.4. A vector field g : Rn → R

n is said to be nondecreasing on R
n
+

if g(x) ≥ g(y) for any x,y ∈ R
n
+ such that x ≥ y.

3. Continuous-time homogeneous cooperative systems.

3.1. Problem statement. Consider the continuous-time dynamical system

G :

{
ẋ
(
t
)
= f
(
x(t)

)
+ g
(
x(t− τ(t))

)
, t ≥ 0,

x
(
t
)
= ϕ

(
t
)
, t ∈ [−τmax, 0],

(3.1)
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2626 FEYZMAHDAVIAN, CHARALAMBOUS, AND JOHANSSON

where x(t) ∈ R
n is the state variable, and f, g : Rn → R

n are continuous vector
fields on R

n, continuously differentiable on R
n\{0}, and such that f(0) = g(0) = 0.

Here, τmax ≥ 0, ϕ(·) ∈ C([−τmax, 0],R
n) is the vector-valued function specifying the

initial condition of the system, and τ(·) is the time-varying delay which satisfies the
following assumption.

Assumption 3.1. The delay τ : R+ → R+ is continuous with respect to time
and satisfies

(3.2) lim
t→+∞ t− τ(t) = +∞.

Note that τ(t) is not necessarily continuously differentiable and no restriction on
its derivative (such as τ̇ (t) < 1) is imposed. Condition (3.2) implies that as t increases,
τ(t) grows slower than time itself. This constraint on time delays is not restrictive
and typically satisfied in real-world applications. For example, the continuous-time
power control algorithm for a wireless network consisting of n mobile users can be
described by

(3.3) ẋi

(
t
)
= −xi

(
t
)
+

n∑
j=1
j �=i

aijxj

(
t− τ(t)

)
, i = 1, . . . , n.

Here, xi represents the transmit power of user i, and aij are nonnegative constants [6,
47]. If τ(t) satisfies (3.2), then given any time t1 ≥ 0, there exists a time t2 > t1 such
that

t− τ(t) ≥ t1 ∀t ≥ t2.

This simply means that given any time t1, information about which transmit power
each user has applied prior to t1 will be received by every other user before a suffi-
ciently long time t2 and not be used in the state evolution of (3.3) after t2. In other
words, state information eventually propagates to all other users in the network and
old information is eventually purged from the network. In the power control problem,
Assumption 3.1 is always satisfied unless the communication between users is totally
lost during a semi-infinite time interval.

Note that all bounded delays, irrespective of whether they are constant or time-
varying, satisfy Assumption 3.1. Moreover, delays satisfying (3.2) may be unbounded.
Consider the following particular class of unbounded delays which was studied in [26].

Assumption 3.2. There exist T > 0 and a scalar 0 ≤ α < 1 such that

(3.4) sup
t>T

τ(t)

t
= α.

One can easily verify that (3.4) implies (3.2). However, the next example shows
that the converse does not, in general, hold. Hence, Assumption 3.2 is a special case
of Assumption 3.1.

Example 3.1. Let τ(t) = t− ln(t+ 1) for t ≥ 0. Since

lim
t→+∞ t− τ(t) = lim

t→+∞ ln(t+ 1) = +∞,

lim
k→+∞

τ(t)

t
= lim

t→+∞
t− ln(t+ 1)

t
= 1,

it is clear that (3.2) holds while (3.4) does not hold.
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HOMOGENEOUS POSITIVE SYSTEMS WITH DELAYS 2627

Remark 3.1. Assumption 3.1 implies that there exists a sufficiently large T0 > 0
such that t− τ(t) > 0 for all t > T0. Define

τmax = − inf
0≤t≤T0

{
t− τ(t)

}
.

Since τmax ≥ 0 is bounded, it follows that for any delay satisfying Assumption 3.1, even
if it is unbounded, the initial condition ϕ(·) is defined on a bounded set [−τmax, 0].

In this section, we study delay-independent stability of nonlinear systems of the
form (3.1) which are positive defined as follows.

Definition 3.1. System G given by (3.1) is said to be positive if for every non-
negative initial condition ϕ(·) ∈ C([−τmax, 0],R

n
+), the corresponding state trajectory

is nonnegative, that is, x(t) ∈ R
n
+ for all t ≥ 0.

The following result provides a sufficient condition for positivity of G.
Proposition 3.2. Consider the time-delay system G given by (3.1). If the fol-

lowing condition holds,

∀i ∈ {1, . . . , n}, ∀x ∈ R
n
+ : xi = 0 ⇒ fi(x) ≥ 0,

∀x ∈ R
n
+, g(x) ≥ 0,

(3.5)

then G is positive.
Proof. See Appendix A.
Note that the nonnegativity of the initial condition is essential for ensuring pos-

itivity of the state evolution of the system G given by (3.1). In other words, when
ϕ(·) ≥ 0 is not satisfied, x(t) may not stay in the positive orthant even if the condition
of Proposition 3.2 hold.

In [18, Proposition 3.1], it was shown that for nonzero constant delays, the suffi-
cient condition in Proposition 3.2 is also necessary, i.e., a system G given by (3.1) with
τ(t) = τmax > 0, t ≥ 0, is positive if and only if (3.5) holds. However, the condition
is not necessary when we allow for time-varying delays, as the next example shows.

Example 3.2. Consider a continuous-time linear system described by (3.1) with

(3.6) f(x1, x2) =

[
1 0

−1 0

] [
x1

x2

]
, g(x1, x2) =

[
0 0

e 0

] [
x1

x2

]
,

where e is the base of the natural logarithm, and let the time-varying delay be

(3.7) τ(t) =

⎧⎪⎨
⎪⎩
0, 0 ≤ t ≤ 1,

t− 1, 1 ≤ t ≤ 2,

1, 2 ≤ t.

Note that 0 ≤ τ(t) ≤ 1 for all t ≥ 0. The solution to (3.6) is given by

x1(t) = x1(0)e
t, 0 ≤ t,

x2(t) =

⎧⎪⎨
⎪⎩
x2(0) + (e− 1)(et − 1)x1(0), 0 ≤ t ≤ 1,

x2(0) + (e2t− et + 1− e)x1(0), 1 ≤ t ≤ 2,

x2(0) + (e2 − e+ 1)x1(0), 2 ≤ t.

It is straightforward to verify that x(t) ≥ 0 for every nonnegative initial condition
x(0) = (x1(0), x2(0)), and hence the linear system (3.6) with the bounded time-
varying delay (3.7) is positive. However, the sufficient condition given in Proposi-
tion 3.2 is not satisfied in this example, since x2 = 0 does not imply f2(x) ≥ 0 for all
x ∈ R

2
+ (take, for example, f2(1, 0) = −1 < 0).
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2628 FEYZMAHDAVIAN, CHARALAMBOUS, AND JOHANSSON

From this point on, vector fields f and g satisfy Assumption 3.3.
Assumption 3.3. The following properties hold:
1. f is cooperative and g is nondecreasing on R

n
+.

2. f and g are homogeneous of degree p with respect to the dilation map δrλ(x).
A system G given by (3.1) satisfying Assumption 3.3 is called homogeneous coop-

erative. Since f(0) = g(0) = 0, by Propositions 2.2 and 3.2, Assumption 3.3.1 ensures
the positivity of homogeneous cooperative systems. The model of some physical sys-
tems fall within this class of positive systems. For example, continuous-time linear
and several nonlinear power control algorithms for wireless networks are described by
homogeneous cooperative systems [3].

While the stability of general dynamical systems may depend on the magnitude
and variation of the time delays, homogeneous cooperative systems have been shown
to be insensitive to constant delays [4]. More precisely, the homogeneous cooperative
system (3.1) with a constant delay τ(t) = τmax, t ≥ 0, is globally asymptotically
stable for all τmax ≥ 0 if and only if the undelayed system (τmax = 0) is globally
asymptotically stable. The main goal of this section is to (i) determine whether a
similar delay-independent stability result holds for homogeneous cooperative systems
with time-varying delays satisfying Assumption 3.1 and to (ii) give explicit estimates
of the decay rate for different classes of time delays (e.g., bounded delays, unbounded
delays satisfying Assumption 3.2, etc.).

3.2. Asymptotic stability of homogeneous cooperative systems. The fol-
lowing theorem establishes a necessary and sufficient condition for delay-independent
asymptotic stability of homogeneous cooperative systems with time-varying delays
satisfying Assumption 3.1. Our proof (which is conceptually related to the Lyapunov
stability theorem) uses the Lyapunov function

V (x) = max
1≤i≤n

(
xi

vi

) rmax
ri

,

where v > 0, and rmax = max1≤i≤n ri, to define sets

(3.8) S(m) =

{
x ∈ R

n
+

∣∣ V (x) ≤ γm‖ϕ‖
}
, m ∈ N0,

where 0 ≤ γ < 1, and

(3.9) ‖ϕ‖ = sup
−τmax≤s≤0

V (ϕ(s)),

and shows that for each m, there exists tm ≥ 0 such that x(t) ∈ S(m) for all t ≥ tm.
In other words, the system state will enter each set S(m) at some time tm and remain
in the set for all future times. Since the sets are nested, i.e.,

S(0) ⊃ · · · ⊃ S(m) ⊃ S(m+ 1) ⊃ · · · ,

the state will move sequentially from set S(m) to S(m + 1); cf. Figure 1. Thus, the
sets play a similar role as level sets of the Lyapunov function V (x). Note that when
f and g are homogeneous with respect to the standard dilation map, V (x) = ‖x‖v∞,
which is often used in analysis of positive linear systems [38].

Theorem 3.3. For the homogeneous cooperative system G given by (3.1), suppose
that Assumption 3.1 holds. Then, the following statements are equivalent:
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γm ϕ

m

x2

x1
12r

S(0)

S(1)

S(2)

S(r)

Fig. 1. Level curves of the Lyapunov function V (x) in the two-dimensional case. The key idea
behind the proof of Theorem 3.3 is that ϕ(·) is initially within the set S(0) and at some time t1 ≥ 0
eventually x(t) enters and stays within the set S(1) for all t ≥ t1; moreover, as t increases further,
x(t) sequentially moves into other sets.

(i) There exists a vector v > 0 such that

(3.10) f(v) + g(v) < 0.

(ii) The positive system G is globally asymptotically stable for every nonnegative
initial condition ϕ(·) ∈ C([−τmax, 0],R

n
+) and for all time delays satisfying

Assumption 3.1.
(iii) The positive system G without delay (τ(t) = 0, t ≥ 0) is globally asymptoti-

cally stable for all nonnegative initial conditions.
Proof. See Appendix B.
The stability condition (3.10) does not include any information on the magni-

tude and variation of delays, so it ensures delay-independent stability. According
to Theorem 3.3, the homogeneous cooperative system G given by (3.1) is globally
asymptotically stable for all time delays satisfying Assumption 3.1 if and only if the
corresponding delay-free system is globally asymptotically stable. This property is
very useful in practical applications, since the delays may not be easy to model in
detail.

Note that Theorem 3.3 can be easily extended to homogeneous cooperative sys-
tems with multiple delays of the form

ẋ
(
t
)
= f
(
x(t)

)
+

s∑
q=1

gq
(
x(t− τq(t))

)
.

Here, s ∈ N, f is cooperative and homogeneous, gq for q = 1, . . . , s are homogenous
and nondecreasing on R

n
+, and τq(t) satisfy Assumption 3.1. In this case, the stability

condition (3.10) becomes

f(v) +
s∑

q=1

gq(v) < 0.

Remark 3.2. In [13], it has been shown that if f and g are homogeneous of
degree zero with respect to the standard dilation map, the homogeneous cooperative
system (3.1) is insensitive to bounded time-varying delays. In this work, we extend
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2630 FEYZMAHDAVIAN, CHARALAMBOUS, AND JOHANSSON

this result to cooperative systems that are homogeneous of any degree with respect to
an arbitrary dilation map. Moreover, we impose minimal restrictions on time delays
and establish insensitivity of homogeneous cooperative systems to the general class
of delays described by Assumption 3.1, which includes bounded delays as a special
case.

3.3. Decay rates of homogeneous cooperative systems. Theorem 3.3 is
concerned with the asymptotic stability of homogeneous cooperative systems with
time-varying delays. However, there are processes and applications for which it is
desirable that the system has a certain decay rate. Loosely speaking, the system has
to converge quickly enough to the equilibrium. Hence, it is important to investigate
the impact of delays on the decay rate of such systems. In this section, we characterize
how time delays affect the decay rate of the homogeneous cooperative system G given
by (3.1). Before stating the main result, we provide the definition of μ-stability,
introduced in [7], for continuous-time systems.

Definition 3.4 (see [7]). Suppose that μ : R+ → R+ is a nondecreasing function
satisfying μ(t) → +∞ as t → +∞. System G given by (3.1) is said to be globally
μ-stable if there exists a constant M > 0 such that for any initial function ϕ(·), the
solution x(t) satisfies

‖x(t)‖ ≤ M

μ(t)
, t > 0,

where ‖ · ‖ is some norm on R
n.

This definition can be regarded as a unification of several types of stability. For
example, when μ(t) = eηt with η > 0, the μ-stability becomes exponential stability;
and when μ(t) = tξ with ξ > 0, then the μ-stability becomes power-rate stability.

Global μ-stability of homogenous cooperative systems can be verified using the
following theorem.

Theorem 3.5. Consider the homogeneous cooperative system G given by (3.1).
Suppose that Assumption 3.1 holds, and that there is a vector v > 0 satisfying

(3.11) f(v) + g(v) < 0.

If there exists a function μ : R+ → R+ such that the following conditions hold,
(i) μ(t) > 0 for all t > 0,
(ii) μ(t) is a nondecreasing function,
(iii) limt→+∞ μ(t) = +∞,
(iv) for each i ∈ {1, . . . , n},

(
rmax

ri

)⎛⎝(fi(v)

vi

)
+

(
lim
t→∞

μ(t)

μ(t− τ(t))

) ri+p

rmax
(
gi(v)

vi

)⎞⎠+ lim
t→∞

μ̇(t)

(μ(t))
1− p

rmax

< 0,

then every solution of G starting in the positive orthant satisfies

(
xi(t)

vi

) rmax
ri

= O
(
μ−1(t)

)
, t ≥ 0,

for each i = 1, . . . , n.
Proof. See Appendix C.
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According to Theorem 3.5, any function μ(t) satisfying conditions (i)–(iv) can
be used to estimate the decay rate of homogeneous cooperative systems with time-
varying delays satisfying Assumption 3.1. From condition (iv), it is clear that the
asymptotic behavior of the delay τ(t) influences the admissible choices for μ(t) and,
hence, the decay bounds that we are able to guarantee. To clarify this statement, we
will analyze a few special cases in detail. First, assume that τ(t) is bounded, i.e.,

(3.12) 0 ≤ τ(t) ≤ τmax, t ≥ 0.

The following result shows that the decay rate of homogeneous cooperative systems
of degree p with bounded time-varying delays is upper bounded by an exponential
function of time when p = 0 and by a polynomial function of time when p > 0.

Corollary 3.6. For the homogeneous cooperative system G given by (3.1), sup-
pose that (3.12) holds and that there exists a vector v > 0 satisfying (3.11).

(i) If f and g are homogeneous of degree p = 0, then G is globally exponentially
stable. In particular,

(3.13)

(
xi(t)

vi

) rmax
ri

= O
(
e−ηt

)
, t ≥ 0,

where 0 < η < min1≤i≤n ηi, and ηi is the positive solution of the equation

(3.14)

(
rmax

ri

)((
fi(v)

vi

)
+

(
eηiτmax

) ri
rmax

(
gi(v)

vi

))
+ ηi = 0;

(ii) if f and g are homogeneous of degree p > 0, the solution x(t) of G satisfies

(3.15)

(
xi(t)

vi

) rmax
ri

= O
(
(θt+ 1)

−rmax
p

)
, t ≥ 0,

where 0 < θ < min{ 1
τmax

,min1≤i≤n θi}, and θi is the positive solution to

(3.16)
fi(v)

vi
+

gi(v)

vi
+ θi

ri
p

= 0.

Proof. See Appendix D.
Remark 3.3. Equation (3.14) has three parameters: the maximum delay bound

τmax, the positive vector v, and ηi. For any fixed τmax ≥ 0 and any fixed v > 0
satisfying (3.11), the left-hand side of (3.14) is smaller than the right-hand side for
ηi = 0 and strictly monotonically increasing in ηi > 0. Therefore, (3.14) has always
a unique positive solution ηi. By a similar argument, (3.16) also admits a unique
positive solution θi.

While the stability of homogeneous cooperative systems with delays satisfying
Assumption 3.1 may, in general, only be asymptotic, Corollary 3.6 demonstrates that
if the delays are bounded, we can guarantee certain decay rates. We will now establish
similar decay bounds for unbounded delays satisfying Assumption 3.2.

Corollary 3.7. Consider the homogeneous cooperative system G given by (3.1).
Suppose that Assumption 3.2 holds and that there is a vector v > 0 satisfying (3.11).
Then, G is globally power-rate stable. In particular,

(i) if f and g are homogeneous of degree p = 0, the solution x(t) of G satisfies(
xi(t)

vi

) rmax
ri

= O
(
t−ξ
)
, t ≥ 0,
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2632 FEYZMAHDAVIAN, CHARALAMBOUS, AND JOHANSSON

β

α1

1

Fig. 2. Plot of β for different values of the parameter α ∈ [0, 1). Clearly, β is monotonically
decreasing with α and approaches zero as α tends to one.

where 0 < ξ < min1≤i≤n ξi, and ξi is the unique positive solution to

(3.17)

(
fi(v)

vi

)
+

(
1

1− α

) ri
rmax

ξi (gi(v)

vi

)
= 0;

(ii) if f and g are homogeneous of degree p > 0, then(
xi(t)

vi

) rmax
ri

= O
(
t
−rmax

p β
)
, t ≥ 0,

where β ∈ (0, 1) is such that

(3.18)

(
fi(v)

vi

)
+

(
1

1− α

)(1+
ri
p )β (

gi(v)

vi

)
< 0

holds for all i.
Proof. See Appendix E.
Corollary 3.7 shows that the decay rate of homogeneous cooperative systems of

degree zero with unbounded delays satisfying Assumption 3.2 is of order O(t−ξ).
Equation (3.17) quantifies how the magnitude of the upper delay bound, α, affects
ξ. Specifically, ξi is monotonically decreasing with α and approaches zero as α tends
to one. By similar reasoning, β, on which the guaranteed decay rate of homogeneous
cooperative systems of degree greater than zero depends, in (3.18) approaches zero
as α tends to one (see Figure 2). Hence, while the homogeneous cooperative system
(3.1) remains power-rate stable for arbitrary unbounded delays satisfying Assumption
3.2, the decay rate deteriorates with increasing α. This means that the guaranteed
convergence rates get increasingly slower as delays are allowed to grow quicker when
t → ∞.

3.4. A special case: Continuous-time positive linear systems. Let f(x) =
Ax and g(x) = Bx such that A ∈ R

n×n is Metzler and B ∈ R
n×n is nonnegative.

Then, the homogeneous cooperative system (3.1) reduces to the positive linear system

GL :

{
ẋ
(
t
)
= Ax

(
t
)
+Bx

(
t− τ(t)

)
, t ≥ 0,

x
(
t
)
= ϕ

(
t
)
, t ∈ [−τmax, 0].

(3.19)

We then have the following special case of Theorem 3.3.
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Corollary 3.8. Consider the positive linear system GL given by (3.19), where A
is Metzler and B is nonnegative. Then, GL is globally asymptotically stable for all time
delays satisfying Assumption 3.1 if and only if there exists a vector v > 0 such that

(3.20)
(
A+B

)
v < 0.

Corollary 3.8 shows that if the positive linear system (3.19) without delay is sta-
ble, it remains asymptotically stable under all bounded and unbounded time-varying
delays satisfying Assumption 3.1. Note that the stability condition (3.20) is a linear
programming feasibility problem in v which can be verified numerically in polynomial
time.

Remark 3.4. Since A is Metzler and B is nonnegative, A+B is Metzler. It follows
from [38, Proposition 2] that the linear inequality (3.20) holds if and only if A+B is
Hurwitz, i.e., all its eigenvalues have negative real parts.

While the asymptotic stability of the positive linear system GL given by (3.19)
with time-varying delays satisfying Assumption 3.1 has been investigated in [42], the
impact of time delays on the decay rate has been missing. Theorem 3.5 helps us to
find guaranteed decay rates of GL for different classes of time delays. Specifically,
Corollaries 3.6 and 3.7 show that GL is exponentially stable if time-varying delays are
bounded, and power-rate stable if delays are unbounded and satisfy Assumption 3.2.
Therefore, not only do we extend the result of [42] to general homogeneous cooperative
systems (not necessarily linear), but we also provide explicit bounds on the decay rate
of positive linear systems.

Remark 3.5. In [27, Example 4.5], it was shown that a positive linear system with
unbounded delays satisfying Assumption 3.2 may converge slower than any exponen-
tial function. However, an upper bound for the decay rate was not derived in [27].
Corollary 3.7 reveals that under Assumption 3.2 on delays, the decay rate of positive
linear systems is upper bounded by a polynomial function of time.

4. Discrete-time homogeneous nondecreasing systems.

4.1. Problem statement. Next, we consider the discrete-time analogue of
(3.1):

Σ :

{
x
(
k + 1

)
= f
(
x(k)

)
+ g
(
x(k − d(k))

)
, k ∈ N0,

x
(
k
)

= ϕ
(
k
)
, k ∈ {−dmax, . . . , 0}.(4.1)

Here, x(k) ∈ R
n is the state variable, f, g : Rn → R

n are continuous vector fields
with f(0) = g(0) = 0, dmax ∈ N0, ϕ : {−dmax, . . . , 0} → R

n is the vector sequence
specifying the initial state of the system, and d(k) represents the time-varying delay
which satisfies the following assumption.

Assumption 4.1. The delay d : N0 → N0 satisfies

(4.2) lim
k→+∞

k − d(k) = +∞.

Intuitively, if Assumption 4.1 does not hold, computation of x(k), even for large
values of k, may involve the initial condition ϕ(·) and those states near it, and hence
x(k) may not converge to zero as k → ∞. To avoid this situation, Assumption 4.1
guarantees that old state information is eventually not used in evaluating (4.1).

Remark 4.1. Assumption 4.1 implies that there exists a sufficiently large T0 ∈ N0

such that k − d(k) > 0 for all k > T0. Let

dmax = − inf
0≤k≤T0

{
k − d(k)

}
.
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2634 FEYZMAHDAVIAN, CHARALAMBOUS, AND JOHANSSON

Clearly, dmax ∈ N0 is bounded. It follows that, even for unbounded delays satisfying
Assumption 4.1, the initial condition ϕ(·) is defined on a finite set {−dmax, . . . , 0}.

Definition 4.1. The system Σ given by (4.1) is said to be positive if for every
nonnegative initial condition ϕ(·) ∈ R

n
+, the corresponding solution is nonnegative,

that is, x(k) ≥ 0 for all k ∈ N.
Positivity of Σ is readily verified using the following result.
Proposition 4.2. Consider the time-delay system Σ given by (4.1). If f(x) ≥ 0

and g(x) ≥ 0 for all x ∈ R
n
+, then Σ is positive.

For nonzero constant delays (d(k) = dmax > 0, k ∈ N0), the sufficient condition in
Proposition 4.2 is also necessary [18, Proposition 3.4]. However, the following example
shows that this result may not true when delays are time-varying.

Example 4.1. Consider a discrete-time linear system described by (4.1) with

f(x) = 2x, g(x) = −x, d(k) =
1

2

(
1− (−1)k

)
, k ∈ N0.

Since g(x) < 0 for x > 0, the sufficient condition given in Proposition 4.2 is not
satisfied. However, it is easy to verify that the solution of this system is x(k) = x(0),
k ∈ N0, and hence x(k) ≥ 0 for all x(0) ≥ 0.

In this section, vector fields f and g satisfy the next assumption.
Assumption 4.2. The following properties hold:
1. f and g are nondecreasing on R

n
+.

2. f and g are homogeneous of degree p with respect to the dilation map δrλ(x).
A system Σ given by (4.1) satisfying Assumption 4.2 is called homogeneous non-

decreasing. Since f(0) = g(0) = 0, Assumption 4.2.1 implies that f and g satisfy the
condition of Proposition 4.2. Hence, homogeneous nondecreasing systems are positive.

Our main objective in this section is to study delay-independent stability of homo-
geneous nondecreasing systems of the form (4.1) with time-varying delays satisfying
Assumption 4.1.

4.2. Asymptotic stability of homogeneous nondecreasing systems. The
next theorem shows that global asymptotic stability of nondecreasing systems of the
form (4.1) that are homogeneous of degree zero is insensitive to bounded and un-
bounded time-varying delays satisfying Assumption 4.1.

Theorem 4.3. For the homogeneous nondecreasing system Σ given by (4.1),
suppose that f and g are homogeneous of degree p = 0. Then, the following statements
are equivalent:

(i) There exists a vector v > 0 such that

(4.3) f(v) + g(v) < v.

(ii) Σ is globally asymptotically stable for any nonnegative initial conditions and
for all bounded and unbounded time-varying delays satisfying Assumption 4.1.

(iii) Σ without delay (d(k) = 0, k ∈ N0) is globally asymptotically stable for any
nonnegative initial conditions.

Proof. See Appendix F.
Theorem 4.3 provides a test for global asymptotic stability of homogeneous non-

decreasing systems of degree zero; if we can demonstrate the existence of a vector
v > 0 satisfying (4.3), then the origin is globally asymptotically stable for all delays
satisfying Assumption 4.1. However, the following example illustrates that (4.3) is,
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in general, not a sufficient condition for global asymptotic stability of homogeneous
nondecreasing systems of degree greater than zero.

Example 4.2. Consider a discrete-time system described by (4.1) with f(x) = x2

and g(x) = 0. Clearly, f is nondecreasing on R+ and homogeneous of degree one with
respect to the standard dilation map. Since f(0.5) = 0.25 < 0.5, (4.3) holds. However,
it is easy to verify that solutions of this system starting from initial conditions x(0) ≥ 1
do not converge to the origin, i.e., the origin is not globally asymptotically stable.

We now show that under stability condition (4.3), homogeneous nondecreasing
systems of degree greater than zero with time-varying delays satisfying Assumption 4.1
have a locally asymptotically stable equilibrium point at the origin, i.e., x(k) converges
to the origin as k → ∞ for sufficiently small initial conditions.

Corollary 4.4. For the homogeneous nondecreasing system Σ given by (4.1)
with degree p > 0, suppose that Assumption 4.1 holds. If there exists a vector v > 0
such that (4.3) holds, then the origin is asymptotically stable with respect to initial
conditions satisfying

0 ≤ ϕ(k) ≤ v ∀k ∈ {−dmax, . . . , 0}.
Proof. See Appendix G.

4.3. Decay rates of homogeneous nondecreasing systems of degree zero.
The next definition introduces μ-stability for discrete-time systems.

Definition 4.5. Suppose that μ : N → R+ is a nondecreasing function satisfying
μ(k) → +∞ as k → +∞. The system Σ given by (4.1) is said to be globally μ-stable
if there exists a constant M > 0 such that for any initial function ϕ(·), the solution
x(k) satisfies

‖x(k)‖ ≤ M

μ(k)
, k ∈ N,

where ‖ · ‖ is some norm on R
n.

Paralleling our continuous-time results, global μ-stability of homogeneous nonde-
creasing systems of degree zero with time-varying delays can be established using the
following theorem.

Theorem 4.6. Consider the homogeneous nondecreasing system Σ given by (4.1)
with degree p = 0. Suppose that Assumption 4.1 holds, and that there is a vector v > 0
satisfying

(4.4) f(v) + g(v) < v.

If there exists a function μ : N → R+ such that the following conditions hold,
(i) μ(k) > 0 for all k ∈ N,
(ii) μ(k + 1) ≥ μ(k) for all k ∈ N,
(iii) limk→+∞ μ(k) = +∞,
(iv) for each i ∈ {1, . . . , n},(

lim
k→∞

μ(k + 1)

μ(k)

) ri
rmax

(
fi(v)

vi

)
+

(
lim
k→∞

μ(k + 1)

μ(k − d(k))

) ri
rmax

(
gi(v)

vi

)
< 1,

then every solution of Σ starting in the positive orthant satisfies(
xi(k)

vi

) rmax
ri

= O
(
μ−1(k)

)
, k ∈ N,

for each i = 1, . . . , n.
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Proof. See Appendix H.
Theorem 4.6 allows us to establish convergence rates of homogeneous nondecreas-

ing systems of degree zero under various classes of time-varying delays. We give the
following result.

Corollary 4.7. For the homogeneous nondecreasing system Σ given by (4.1)
with degree p = 0, suppose that there exists a vector v > 0 satisfying (4.4), and that
there exist T ∈ N and a scalar 0 ≤ α < 1 such that

(4.5) sup
k>T

d(k)

k
= α.

Let ξi be the unique positive solution of the equation

(4.6)

(
fi(v)

vi

)
+

(
1

1− α

) ri
rmax

ξi (gi(v)

vi

)
= 1, i = 1, . . . , n.

Then, Σ is globally power-rate stable for any nonnegative initial conditions and for
any unbounded delays satisfying (4.5). In particular,(

xi(k)

vi

) rmax
ri

= O
(
k−ξ
)
, k ∈ N,

where 0 < ξ < min1≤i≤n ξi.

4.4. A special case: Discrete-time positive linear systems. We now dis-
cuss delay-independent stability of a special case of (4.1), namely, discrete-time posi-
tive linear systems of the form

ΣL :

{
x
(
k + 1

)
= Ax

(
k
)
+Bx

(
k − d(k)

)
, k ∈ N0,

x
(
k
)

= ϕ
(
k
)
, k ∈ {−dmax, . . . , 0}.(4.7)

In terms of (4.1), f(x) = Ax and g(x) = Bx. It is easy to verify that if A,B ∈ R
n×n

are nonnegative matrices, Assumption 4.2 is satisfied. Therefore, Theorem 4.3 can
help us to derive a necessary and sufficient condition for delay-independent stability
of (4.7). Specifically, we note the following.

Corollary 4.8. Consider the discrete-time positive linear system ΣL given
by (4.7), where A and B are nonnegative. Then, there exists a vector v > 0 such that

(4.8)
(
A+B

)
v < v

if and only if ΣL is globally asymptotically stable for all time delays satisfying As-
sumption 4.1.

Remark 4.2. For the positive linear system (4.7), A and B are nonnegative, so
A + B is also nonnegative. According to property of nonnegative matrices [2], [38,
Proposition 1], there exists a vector v > 0 satisfying (4.8) if and only if all eigenvalues
of A+B are strictly inside the unit circle.

Remark 4.3. In [12], it was shown that discrete-time positive linear systems are
insensitive to time delays satisfying Assumption 4.1. Theorem 4.3 shows that a similar
delay-independent stability result holds for nonlinear positive systems whose vector
fields are nondecreasing and homogeneous of degree zero. Furthermore, the impact of
various classes of time delays on the convergence rate of positive linear systems has
been missing in [12], whereas Theorem 4.6 provides explicit bounds on the decay rate
that allow us to quantify the impact of bounded and unbounded time-varying delays
on the decay rate.
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Fig. 3. Comparison of guaranteed upper bound and actual decay rate of the homogeneous
cooperative system (5.1) corresponding to the initial condition ϕ(t) = (1, 1) for all t ∈ [−5, 0].

5. An illustrative example. Consider the continuous-time system (3.1) with

(5.1) f(x1, x2) =

[−5x3
1 + 2x1x2

x2
1x2 − 4x2

2

]
, g(x1, x2) =

[
x1x2

2x4
1

]
.

Both f and g are homogeneous of degree p = 2 with respect to the dilation map
δrλ(x) with r = (1, 2). Moreover, f is cooperative and g is nondecreasing on R

2
+.

Since f(1, 1) + g(1, 1) < 0, it follows from Theorem 3.3 that the homogeneous coop-
erative system (5.1) is globally asymptotically stable for any time delays satisfying
Assumption 3.1. Now, consider the specific time-varying delay τ(t) = 4+sin(t), t ≥ 0.
As τ(t) ≤ τmax = 5 for all t ≥ 0, Corollary 3.6 can help us to calculate an upper bound
on the decay rate of (5.1). Using v = (1, 1) and rmax = 2, the solutions to (3.16) are
θ1 = 4, θ2 = 1, which implies that

θ ∼= min

{
1

5
,min{4, 1}

}
=

1

5
.

Thus, the solution x(t) of (5.1) satisfies

max{x2
1(t), x2(t)} = O

(
1

1
5 t+ 1

)
, t ≥ 0.

Figure 3 gives the simulation results of the actual decay rate of the homogeneous
cooperative system (5.1) and the guaranteed decay rate we calculated, when the initial
condition is ϕ(t) = (1, 1) for all t ∈ [−5, 0].
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6. Conclusions. This paper has been concerned with delay-independent stabil-
ity of a significant class of nonlinear (continuous- and discrete-time) positive systems
with time-varying delays. We derived a set of necessary and sufficient conditions
for global asymptotic stability of continuous-time homogeneous cooperative systems
of arbitrary degree and discrete-time homogeneous nondecreasing systems of degree
zero with bounded and unbounded time-varying delays. These results show that the
asymptotic stability of such systems is independent of the magnitude and variation
of the time delays. However, we also observed that the decay rates of these systems
depend on how fast the delays can grow large. We developed two theorems for global
μ-stability of positive systems that quantify the convergence rates for various classes of
time delays. For discrete-time homogeneous nondecreasing systems of degree greater
than zero, we demonstrated that the origin is locally asymptotically stable under
global asymptotic stability conditions that we derived.

Appendix A. Proof of Proposition 3.2. Consider the following differential
equation: {

ẏ
(
t
)
= f
(
y(t)
)
+ g
(
y(t− τ(t))

)
+ 1

k1, t ≥ 0,

y
(
t
)
= ϕ

(
t
)
, t ∈ [−τmax, 0],

(A.1)

where k ∈ N, and 1 ∈ R
n is the vector with all components equal to 1. Let y(k)(t) be

the solution to (A.1) with the nonnegative initial condition ϕ(·) ∈ C([−τmax, 0],R
n
+).

Clearly, y(k)(0) = ϕ(0) ≥ 0. We claim that y(k)(t) ≥ 0 for all t ≥ 0. By contradiction,
suppose this is not true. Then, there exist an index j ∈ {1, . . . , n} and a time t1 ≥ 0

such that y(k)(t) ≥ 0 for all t ∈ [0, t1], y
(k)
j (t1) = 0, and

(A.2) D+y
(k)
j (t)

∣∣∣∣
t=t1

≤ 0.

It follows from (3.5) and the above observations that

(A.3) fj
(
y(k)(t1)

) ≥ 0.

Since t1 − τ(t1) ∈ [−τmax, t1] and ϕ(·) ≥ 0, we have y(k)
(
t1 − τ(t1)

) ≥ 0 irrespective
of whether t1 − τ(t1) is nonnegative or not. From (3.5), we then have

(A.4) gj
(
y(k)(t1 − τ(t1))

) ≥ 0.

Using (A.3) and (A.4), the upper-right Dini-derivative of y
(k)
j (t) along the trajectories

of (A.1) at t = t1 is given by

D+y
(k)
j (t)

∣∣∣∣
t=t1

= fj
(
y(k)(t1)

)
+ gj

(
y(k)(t1 − τ(t1))

)
+

1

k

≥ 1

k
> 0,

which contradicts (A.2). Therefore,

(A.5) y(k)(t) ≥ 0 ∀t ≥ 0.

As k was an arbitrary natural number, it follows that (A.5) holds for all k ∈ N. By
letting k → ∞, y(k)(t) converges to the solution x(t) of (3.1) uniformly on [−τmax,∞)
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HOMOGENEOUS POSITIVE SYSTEMS WITH DELAYS 2639

[21, Theorem 2.1], which implies that x(t) ≥ 0 for all t ≥ 0. Hence, the system (3.1)
is positive.

Appendix B. Proof of Theorem 3.3. (i) ⇒ (ii). Let v > 0 be a vector such
that (3.10) holds and let

(B.1) ζ = − max
1≤i≤n

{
fi(v) + gi(v)

vi

}
.

Note that ζ > 0. Since g is nondecreasing on R
n
+ and g(0) = 0, gi(v) ≥ 0 for all i.

Thus,

(B.2)
fi(v)

vi
≤ −ζ

for i = 1, . . . , n. Define

γi =

(
1 +

ζ/2

fi(v)/vi

) rmax
ri+p

,

where rmax = max1≤i≤n ri. From (B.2), one can verify that γi ∈ (0, 1). We have

γ
ri+p

rmax

i

(
fi(v)

vi

)
+

gi(v)

vi
=

fi(v)

vi
+

gi(v)

vi
+

ζ

2

≤ −ζ

2
, i = 1, . . . , n,

where we have used (B.1) to get the inequality. For each i, it follows that

(B.3) γ
ri+p

rmax

(
fi(v)

vi

)
+

gi(v)

vi
≤ −ζ

2
,

where γ = max1≤i≤n γi. Clearly, γ ∈ (0, 1). The proof now proceeds in two steps:
1. First, we show that for any initial condition ϕ(·) ∈ C([−τmax, 0],R

n
+), the

corresponding solution x(t) of (3.1) satisfies x(t) ∈ S(0) for all t ≥ 0, where the sets
S(m) are defined in (3.8).

2. By induction, we then prove that for each m ∈ N0, there exists a time tm ≥ 0
such that x(t) will enter the set S(m) at tm and remains in this set for all t ≥ tm.

Step 1. Since the homogeneous cooperative system (3.1) is positive, xi(t) ≥ 0 for
all i ∈ {1, . . . , n} and all t ≥ 0. Let

(B.4) zi(t) =

(
xi(t)

vi

) rmax
ri − ‖ϕ‖,

where ‖ϕ‖ is defined in (3.9). From the definition of ‖ϕ‖, zi(0) ≤ 0 for all i. We
claim that zi(t) ≤ 0 for all t ≥ 0. By contradiction, suppose this is not true. Then,
there exist an index j ∈ {1, . . . , n} and a time t1 ≥ 0 such that

zi(t) ≤ 0, i = 1, . . . , n, t ∈ [0, t1],

zj(t1) = 0,
(B.5)

and

(B.6) D+zj(t)

∣∣∣∣
t=t1

≥ 0.
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2640 FEYZMAHDAVIAN, CHARALAMBOUS, AND JOHANSSON

From (B.4) and (B.5), we have

xi(t1) ≤ (λϕ)
ri vi, i = 1, . . . , n, i �= j,

xj(t1) = (λϕ)
rj vj ,

where λϕ = ‖ϕ‖ 1
rmax . Since f is cooperative and homogeneous of degree p with

respect to the dilation map δrλ(x), it follows from Proposition 2.2 that

(B.7) fj
(
x(t1)

) ≤ fj
(
δrλϕ

(v)
)
=
(
λϕ

)rj+p
fj
(
v
)
.

If t1 − τ(t1) ∈ [0, t1], then, from (B.5), we have zi
(
t1 − τ(t1)

) ≤ 0, which implies that

xi

(
t1 − τ(t1)

) ≤ (λϕ

)ri
vi for all i, or, equivalently,

x
(
t1 − τ(t1)

) ≤ δrλϕ
(v).

Note also that if t1− τ(t1) ∈ [−τmax, 0], then x(t1− τ(t1)) = ϕ(t1− τ(t1)), and hence,
from the definition of ‖ϕ‖, the above inequality still holds. As g is nondecreasing and
homogeneous, this in turn implies that

(B.8) gj
(
x(t1 − τ(t1))

) ≤ gj
(
δrλϕ

(v)
)
=
(
λϕ

)rj+p
gj
(
v
)
.

The upper-right Dini-derivative of zj(t) along the trajectories of (3.1) at t = t1 is
given by

D+zj(t)

∣∣∣∣
t=t1

=

(
rmax

rj

)(
xj(t1)

vj

)( rmax
rj

−1)
(
fj
(
x(t1)

)
+ gj

(
x(t1 − τ(t1))

)
vj

)

≤
(
rmax

rj

)(
λϕ

)rmax−rj(
λϕ

)rj+p(
fj(v) + gj(v)

vj

)

=

(
rmax

rj

)(
λϕ

)rmax+p(
fj(v) + gj(v)

vj

)
,

where we have used (B.7) and (B.8) to obtain the inequality. It follows from (3.10)
that D+zj(t1) < 0, which contradicts (B.6). Therefore, zi(t) ≤ 0 for all i and all
t ≥ 0, and hence V (x(t)) ≤ ‖ϕ‖ for t ≥ 0. This shows that x(t) ∈ S(0) for all t ≥ 0.

Step 2. According to the previous step, the induction hypothesis is true for m = 0.
Now, assume that it holds for a given m, i.e., V (x(t)) ≤ γm‖ϕ‖ for all t ≥ tm. We
will prove that there exists a finite time tm+1 ≥ 0 such that x(tm+1) ∈ S(m+ 1). By
contradiction, suppose this is not true. Then,

(B.9) γm+1‖ϕ‖ ≤ V (x(t)) ≤ γm‖ϕ‖ ∀t ≥ tm.

Let it ∈ {1, . . . , n} be an index such that V (x(t)) = Vit(xit(t)), where

Vi(xi) =

(
xi

vi

) rmax
ri

.

The cooperativity and homogeneity of f implies that

fit
(
x(t)

) ≤ (V (x(t))
)( rit

+p

rmax

)
fit
(
v
)

≤ (γm+1‖ϕ‖)( rit
+p

rmax

)
fit
(
v
) ∀t ≥ tm,(B.10)
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where the second inequality follows from (B.9) and the fact that fit
(
v
)
< 0. From

Assumption 3.1, limt→∞ t− τ(t) = +∞. Thus, there exists sufficiently large t̂m ≥ tm
so that t − τ(t) ≥ tm for all t ≥ t̂m. Since x(t) ∈ S(m) for t ≥ tm, it follows that
x(t − τ(t)) ∈ S(m) for all t ≥ t̂m, implying that V (x(t− τ(t))) ≤ γm‖ϕ‖ for t ≥ t̂m,
or, equivalently,

(B.11) xi

(
t− τ(t)

) ≤ (γm‖ϕ‖)( ri
rmax

)
vi ∀t ≥ t̂m

for all i. As g is nondecreasing and homogeneous, we then have

(B.12) git
(
x(t− τ(t))

) ≤ (γm‖ϕ‖)( rit
+p

rmax

)
git
(
v
) ∀t ≥ t̂m.

Substituting (B.10) and (B.12) into the upper-right Dini-derivative of Vit(xit) along
the trajectories of (3.1) yields

D+Vit(xit)

=

(
rmax

rit

)(
xit(t)

vit

)( rmax
rit

−1)
(
fit
(
x(t)

)
+ git

(
x(t− τ(t))

)
vit

)

≤
(
rmax

rit

)(
xit(t)

vit

)( rmax
rit

−1)(
γm‖ϕ‖

)(
rit

+p

rmax

)(
γ

rit
+p

rmax

(
fit(v)

vit

)
+

git(v)

vit

)

≤ −
(
rmax

rit

)(
xit(t)

vit

)( rmax
rit

−1)(
γm‖ϕ‖

)(
rit

+p

rmax

)(
ζ

2

)
,

≤ −
(
rmax

rit

)(
γm+1‖ϕ‖

)(1− rit
rmax

)(
γm‖ϕ‖

)(
rit

+p

rmax

)(
ζ

2

)
︸ ︷︷ ︸

κ

∀t ≥ t̂m,(B.13)

where the last two inequalities follow from (B.3) and (B.9), respectively. Note that
κ > 0. Since Vi(xi) is continuously differentiable on R for each i, V (x) is locally
Lipschitz and

D+V (x(t)) = max
j∈J (t)

D+Vj(xj(t)),

where J (t) = {i | Vi(xi(t)) = V (x(t))} [8]. It follows from (B.13) that

D+V (x(t)) ≤ −κ ∀t ≥ t̂m.

This together with (B.9) implies that

V (x(t)) ≤ V (x(t̂m))− κ(t− t̂m)

≤ γm‖ϕ‖ − κ(t− t̂m) ∀t ≥ t̂m.

It is immediate to see that the the right-hand side of the above inequality becomes
smaller than γm+1‖ϕ‖ when

t ≥ tm+1 = t̂m + γm‖ϕ‖1− γ

κ
,

which contradicts (B.9). Thus, necessarily, x(t) reaches S(m+ 1) in a finite time.
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We now prove that x(t) remains in S(m+ 1) for all t ≥ tm+1. Let

(B.14) wi(t) =

(
xi(t)

vi

) rmax
ri − γm+1‖ϕ‖, t ≥ tm+1.

Since x(tm+1) ∈ S(m+1), wi(tm+1) ≤ 0 for all i. We show that wi(t) ≤ 0 for all i and
all t ≥ tm+1. If, by contradiction, this is not true, then there is an index j ∈ {1, . . . , n}
and a time t2 ≥ tm+1 such that wi(t) ≤ 0 for t ∈ [tm+1, t2], wj(t2) = 0, and

(B.15) D+wj(t)

∣∣∣∣
t=t2

≥ 0.

From (B.14), we have

xi(t2) ≤
(
γm+1‖ϕ‖) ri

rmax vi, i = 1, . . . , n, i �= j,

xj(t2) =
(
γm+1‖ϕ‖) rj

rmax vj .

It now follows from cooperativity and homogeneity of f that

(B.16) fj
(
x(t2)

) ≤ (γm+1‖ϕ‖) rj+p

rmax fj
(
v
)
.

Moreover, since t2 ≥ tm+1 ≥ t̂m, it follows from (B.11) that

(B.17) gj
(
x(t2 − τ(t2))

) ≤ (γm‖ϕ‖) rj+p

rmax gj
(
v
)
,

where we have used the fact that g is nondecreasing and homogeneous. The upper-
right Dini-derivative of wj(t) along the trajectories of (3.1) at t = t2 is given by

D+wj(t)

∣∣∣∣
t=t2

≤
(
rmax

rj

)(
xj(t2)

vj

)(
rmax
rj

−1
)(

γm‖ϕ‖
) rj+p

rmax
(
γ

rj+p

rmax

(
fj(v)

vj

)
+

gj(v)

vj

)
< 0,

where we have used (B.16) and (B.17) to get the first inequality and (B.3) to obtain
the second inequality. This contradicts (B.15), and hence wi(t) ≤ 0 for all i and
all t ≥ tm+1. It follows that V (x(t)) ≤ γm+1‖ϕ‖ for t ≥ tm+1, or, equivalently,
x(t) ∈ S(m+ 1) for all t ≥ tm+1.

In summary, we conclude that for each m ∈ N0, there exists tm ≥ 0 such that
x(t) ∈ S(m) for all t ≥ tm. Since γ < 1, γm approaches zero as m → ∞. Therefore,
the origin is globally asymptotically stable.

(ii) ⇒ (iii). Assume that (3.1) is globally asymptotically stable for all delays
satisfying Assumption 3.1. Particularly, let τ(t) = 0. Then, ẋ(t) = f(x(t)) + g(x(t))
is asymptotically stable.

(iii) ⇒ (i). As f + g is a cooperative vector field, it follows from [39, Proposi-
tion 3.10, Theorem 3.12] that there is some vector v > 0 satisfying (3.10).

Appendix C. Proof of Theorem 3.5. Let v > 0 be a vector satisfying (3.11).
According to Theorem 3.3, the homogeneous cooperative system (3.1) is globally

D
ow

nl
oa

de
d 

09
/2

8/
14

 to
 1

30
.2

37
.3

7.
24

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

HOMOGENEOUS POSITIVE SYSTEMS WITH DELAYS 2643

asymptotically stable for all nonnegative initial conditions and for all delays satisfying
Assumption 3.1. We will prove that it is also globally μ-stable. From Remark 3.1,
there exists a constant T0 > 0 large enough such that

(C.1) t− τ(t) > 0 ∀t > T0.

By condition (iv), we can find a sufficiently large constant T1 > 0 such that for all
t > T1 and all i ∈ {1, . . . , n},

(
rmax

ri

)⎛⎝(fi(v)

vi

)
+

(
μ(t)

μ(t− τ(t))

) ri+p

rmax
(
gi(v)

vi

)⎞⎠+
μ̇(t)

(μ(t))
1− p

rmax

< 0.

Since μ(t) is positive and nondecreasing on R+, it follows that

(C.2) ε

(
rmax

ri

)⎛⎝(fi(v)

vi

)
+

(
μ(t)

μ(t− τ(t))

) ri+p

rmax
(
gi(v)

vi

)⎞⎠+
μ̇(t)

(μ(t))1−
p

rmax

< 0

holds for any ε ≥ 1. Let M = max{1, μ(T )‖ϕ‖}, where T = max{T0, T1} + 1, and
‖ϕ‖ is defined in (3.9). According to Theorem 3.3, V (x(t)) ≤ ‖ϕ‖ for all t ≥ 0. Thus,

sup
0≤t≤T

{
μ(t)V (x(t))

} ≤ sup
0≤t≤T

{
μ(t)}‖ϕ‖

= μ(T )‖ϕ‖
≤ M,(C.3)

where we have used condition (ii) to get the equality. It follows that

(C.4) μ(t)V (x(t)) ≤ M ∀t ∈ [0, T ].

In order to prove global μ-stability, we will show that (C.4) also holds for all t ≥ T .
By contradiction, suppose this is not true. Then, there exist an index j ∈ {1, . . . , n}
and a time t1 ≥ T such that

μ(t)V (x(t)) ≤ M, t ∈ [0, t1],(C.5)

μ(t1)

(
xj(t1)

vj

) rmax
rj

= M,(C.6)

D+μ(t)

(
xj(t)

vj

) rmax
rj

∣∣∣∣
t=t1

≥ 0.(C.7)

From (C.5) and (C.6), we have

xi(t1) ≤
(

M

μ(t1)

) ri
rmax

vi, i = 1, . . . , n, i �= j,

xj(t1) =

(
M

μ(t1)

) rj
rmax

vj .

Now, as f is cooperative and homogeneous, it follows from Proposition 2.2 that

(C.8) fj
(
x(t1)

) ≤ ( M

μ(t1)

) rj+p

rmax

fj(v).
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Since t1 ≥ T > T0, it follows from (C.1) that t1 ≥ t1 − τ(t1) > 0. Hence, from (C.5),
we have

μ
(
t1 − τ(t1)

)
V (x(t1 − τ(t1))) ≤ M.

As g is nondecreasing and homogeneous, this in turn implies

(C.9) gj
(
x(t1 − τ(t1))

) ≤ ( M

μ(t1 − τ(t1))

) rj+p

rmax

gj(v).

We then have

D+μ(t)

(
xj(t)

vj

) rmax
rj

∣∣∣∣
t=t1

= μ(t1)

(
rmax

rj

)(
xj(t1)

vj

)( rmax
rj

−1)
ẋj(t1)

vj
+ μ̇(t1)

(
xj(t1)

vj

) rmax
rj

= μ(t1)

(
rmax

rj

)(
M

μ(t1)

)(1− rj
rmax

)(
fj(x(t1)) + gj(x(t1 − τ(t1)))

vj

)
+M

μ̇(t1)

μ(t1)

≤ M

(u(t1))
p

rmax

×
⎧⎨
⎩M

p
rmax

(
rmax

rj

)⎛⎝(fj(v)

vj

)
+

(
μ(t1)

μ(t1 − τ(t1))

) rj+p

rmax
(
gj(v)

vj

)⎞⎠+
μ̇(t1)

μ1− p
rmax

⎫⎬
⎭ ,

where we have used (C.6) to get the second equality, and (C.8)–(C.9) to obtain the
inequality. Since M ≥ 1 and t1 ≥ T > T1, it now follows from (C.2) that

D+μ(t)

(
xj(t)

vj

) rmax
rj

∣∣∣∣
t=t1

< 0,

which contradicts (C.7). We conclude that μ(t)V (x(t)) ≤ M for all t ≥ T , and hence

V (x(t)) ≤ M

μ(t)
, t ≥ 0.

This completes the proof.

Appendix D. Proof of Corollary 3.6. (i) Assume that p = 0. According
to Remark 3.3, (3.14) has a unique positive solution ηi. Pick a constant η satisfying
0 < η < min1≤i≤n ηi. Since the left-hand side of (3.14) is strictly monotonically
increasing in ηi > 0, we have

(D.1)

(
rmax

ri

)((
fi(v)

vi

)
+

(
eητmax

) ri
rmax

(
gi(v)

vi

))
+ η < 0, i = 1, . . . , n.

Now, let μ(t) = eηt. One can verify that μ(t) satisfies conditions (i)–(iii) of Theo-
rem 3.5. Moreover,

lim
t→∞

μ̇(t)

μ(t)
= η,
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and

lim
t→∞

μ(t)

μ(t− τ(t))
≤ lim

t→∞
eηt

eη(t−τmax)
= eητmax ,

where the inequality holds since τ(t) ≤ τmax and μ(t) is nondecreasing. It follows from
(D.1) and the above observations that condition (iv) of Theorem 3.5 is also satisfied.
Hence, the solution x(t) of (3.1) satisfies (3.13).

(ii) If p > 0, we can pick μ(t) = (θt + 1)
rmax

p . The rest of the proof is similar to
the one for p = 0 and thus omitted.

Appendix E. Proof of Corollary 3.7. (i) Assume that p = 0. The left-hand
side of (3.17) is strictly monotonically increasing in ξi > 0, which implies that

(
fi(v)

vi

)
+

(
1

1− α

) ri
rmax

ξ (
gi(v)

vi

)
< 0, i = 1, . . . , n,

where ξ ∈ (0,min1≤i≤n ξi
)
. Now, letting μ(t) = tξ, the rest of the proof is similar to

the one of Corollary 3.6 and thus omitted.
(ii) For p > 0, we can choose μ(t) = t

rmax
p β, where β satisfies (3.18).

Appendix F. Proof of Theorem 4.3. (i) ⇒ (ii). Let v > 0 be a vector such
that (4.3) holds and let

(F.1) γ = max
1≤i≤n

(
fi(v) + gi(v)

vi

) rmax
ri

.

Note that 0 ≤ γ < 1. The proof will broken up into two steps:
1. We show that for any nonnegative initial condition ϕ(·), x(k) ∈ S(0) for all

k ∈ N0, where the sets S(m) are defined in (3.8).
2. We then use induction to show that for each m ∈ N0, there exists km ∈ N0

such that x(k) ∈ S(m) for all k ≥ km.
Step 1. Since the initial state x(0) satisfies V (x(0)) ≤ ‖ϕ‖, x(0) ∈ S(0). Assume

for induction that x(k) ∈ S(0) holds for all k up to some k̄ ∈ N0. Thus,

xi(k) ≤ ‖ϕ‖ ri
rmax vi, k ∈ {−dmax, . . . , k̄},

for all i. As f and g are homogeneous of degree zero and nondecreasing on R
n
+, it

follows that

fi
(
x(k̄)

) ≤ ‖ϕ‖ ri
rmax fi

(
v
)
,

gi
(
x(k̄ − d(k̄))

) ≤ ‖ϕ‖ ri
rmax gi

(
v
)
.

(F.2)

For each i ∈ {1, . . . , n}, we then have

1

vi
xi(k̄ + 1) =

fi
(
x(k̄)

)
+ gi

(
x(k̄ − d(k̄))

)
vi

≤ ‖ϕ‖ ri
rmax

(
fi(v) + gi(v)

vi

)
≤ ‖ϕ‖ ri

rmax ,
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where we have used (F.2) to get the first inequality and (4.3) to obtain the second
inequality. It follows that V (x(k̄ + 1)) ≤ ‖ϕ‖, which completes the induction proof.
Therefore, x(k) ∈ S(0) for all k ∈ N0.

Step 2. Assume for induction that x(k) ∈ S(m) for all k ≥ km, i.e.,

xi(k) ≤ (γm‖ϕ‖)
ri

rmax vi, k ≥ km.

We will show that there exists km+1 ∈ N0 such that x(k) ∈ S(m+1) for all k ≥ km+1.
Since f is homogeneous of degree zero and nondecreasing on R

n
+, we have

(F.3) fi
(
x(k)

) ≤ (γm‖ϕ‖)
ri

rmax fi
(
v
)
, k ≥ km.

According to Assumption 4.1, limk→∞ k − d(k) = +∞, so one can find a sufficiently
large km ≥ km, km ∈ N, such that k − d(k) ≥ km for all k ≥ km. Moreover, since
x(k) ∈ S(m) for k ≥ km, we have x(k − d(k)) ∈ S(m) for all k ≥ km, which implies
that V (x(k − d(k))) ≤ γm‖ϕ‖, or, equivalently,

xi

(
k − d(k)

) ≤ (γm‖ϕ‖)
ri

rmax vi, k ≥ km.

As g is homogeneous of degree zero and nondecreasing on R
n
+, it follows that

(F.4) gi
(
x(k − d(k))

) ≤ (γm‖ϕ‖)
ri

rmax gi
(
v
)
, k ≥ km.

For each i ∈ {1, . . . , n}, we then have

1

vi
xi

(
k + 1

) ≤ (γm‖ϕ‖)
ri

rmax

(
fi(v) + gi(v)

vi

)
≤ (γm+1‖ϕ‖) ri

rmax ∀k ≥ km,

where we have used (F.3) and (F.4) to get the first inequality, and (F.1) to obtain the
second inequality. Therefore,

V (x(k + 1)) ≤ γm+1‖ϕ‖ ∀k ≥ km,

which implies that x(k + 1) ∈ S(m+ 1) for all k ≥ km. Thus,

x(k) ∈ S(m+ 1) ∀k ≥ km + 1.

Letting km+1 = km + 1, the induction proof is complete.
In summary, we conclude that for each m, there exists km such that x(k) ∈

S(m) for all k ≥ km. Since γ < 1, γm approaches zero as m → +∞. Hence, the
homogeneous nondecreasing system (4.1) is globally asymptotically stable.

(ii) ⇒ (iii). Suppose that (4.1) is asymptotically stable for all delays satisfying
Assumption 4.1. Particularly, let d(k) = 0. Then, x(k + 1) = f(x(k)) + g(x(k)) is
asymptotically stable.

(iii) ⇒ (i). Since f + g is continuous, nondecreasing on R
n
+ and (f + g)(0) = 0,

the conclusion follows from [9, Propositions 5.2 and 5.6].

Appendix G. Proof of Corollary 4.4. Note that since ϕ(k) ≤ v for all
k ∈ {−dmax, . . . , 0}, we have ‖ϕ‖ ≤ 1. The proof is similar to the one of Theorem 4.3
and thus omitted.

Appendix H. Proof of Theorem 4.6. Let v > 0 be a vector satisfying (4.4).
According to Theorem 4.3, the homogeneous nondecreasing system (4.1) with time
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delays satisfying Assumption 4.1 is globally asymptotically stable. We will prove that
it is also globally μ-stable. From Remark 4.1, there exists T0 ∈ N such that

(H.1) k − d(k) > 0 ∀k > T0.

From condition (iv), one can find a sufficiently large constant T1 ∈ N, such that for
all k > T1, we have

(H.2)

(
μ(k + 1)

μ(k)

) ri
rmax

(
fi(v)

vi

)
+

(
μ(k + 1)

μ(k − d(k))

) ri
rmax

(
gi(v)

vi

)
< 1.

Let M = μ(T )‖ϕ‖, where T = max{T0, T1}+ 1, and ‖ϕ‖ is defined in (3.9). We now
use induction to prove that

(H.3) V (x(k)) ≤ M

μ(k)
∀k ∈ N.

According to Theorem 4.3, V (x(k)) ≤ ‖ϕ‖ for all k ∈ N. Thus,

max
1≤k≤T

{
μ(k)V (x(k))

} ≤ max
1≤k≤T

{
μ(k)}‖ϕ‖

= μ(T )‖ϕ‖
= M,(H.4)

where we have used condition (ii) to get the first equality. It follows from (H.4) that
(H.3) is true for k ∈ {1, . . . , T}. Next, assume for induction that (H.3) holds for all k
up to some k, where k ≥ T . Thus,

0 ≤
(
xi(k)

vi

) rmax
ri ≤ M

μ(k)
, k = 1, . . . , k,

which implies that

(H.5) 0 ≤ xi(k) ≤
(

M

μ(k)

) ri
rmax

vi.

Since k ≥ T > T0, it follows from (H.1) that k − d(k) ∈ {1, . . . , k}. Hence,

(H.6) 0 ≤ xi

(
k − d(k)

) ≤ ( M

μ(k − d(k))

) ri
rmax

vi.

As f and g are homogeneous of degree zero and nondecreasing on R
n
+, it follows from

(H.5) and (H.6) that

fi
(
x(k)

) ≤ ( M

μ(k)

) ri
rmax

fi
(
v
)
,

gi
(
x(k − d(k)

) ≤ ( M

μ(k − d(k))

) ri
rmax

gi
(
v
)
.

(H.7)
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We now show that x(k + 1) satisfies (H.3). For each i ∈ {1, . . . , n},

1

vi
xi(k + 1) =

fi
(
x(k)

)
+ gi

(
x(k − d(k))

)
vi

≤
(

M

μ(k)

) ri
rmax

(
fi(v)

vi

)
+

(
M

μ(k − d(k))

) ri
rmax

(
gi(v)

vi

)

≤
(

M

μ(k + 1)

) ri
rmax

,

where we have used (H.7) to get the first inequality and (H.2) to obtain the second
inequality. Therefore,

V (x(k + 1)) ≤ M

μ(k + 1)
,

and the induction proof is complete.
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