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Distributed Formation of Balanced and Bistochastic Weighted
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Weight-balanced digraph:
Sum of weights on incoming links = Sum of weights on outgoing links

Bistochastic (doubly stochastic) digraph:
Sum of weights on incoming links = Sum of weights on outgoing links = 1
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Motivation

1 Weight-balanced matrix formation

Synchronization

Average consensus via linear iterations for continuous-time
systems (special case of synchronization without dynamics)

Applications where weight balance plays a key role:
Traffic-flow problems captured by n junctions and m one-way
streets
Stable flocking of agents with significant inertial effects
Pinning control, optoelectronics, biology, ...

Related to weights that form a bistochastic matrix

2 Bistochastic matrix formation

Average consensus via linear iterations in discrete-time systems -
applications in multicomponent systems where one is interested in
distributively averaging measurements, e.g., sensor networks,
environmental monitoring
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Introduction
Distributed System Model

Distributed systems conveniently captured by digraphs
1 Components represented by vertices (nodes)
2 Communication and sensing links represented by edges

v1 v2

v3 v4

Consider a network with nodes (v1, v2, . . . , vN )
E.g., sensors, robots, unmanned vehicles, resources, etc.

Nodes can receive information according to (possibly directed)
communication links

Each node vj has some initial value xj [0] (could be belief, position,
velocity, etc.)
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Consensus and Average Consensus

Typical objective: Calculate functions of initial values in a distributed
manner (e.g., max`{x`[0]},

∑
` x2

` [0], etc.)

Consensus: All nodes calculate (in a distributed manner, each time
using only local information) same function of initial values x1[0], x2[0],
. . . , xN [0]

Average Consensus: All nodes calculate (in a distributed manner) the
average x ≡ 1

N

∑N
`=1 x`[0] (where N is the number of nodes)

Possible centralized strategy: Route all values to a single entity (leading
node) who then determines the function value (e.g., average) and
routes it back to the nodes

Average serves as primitive for estimation, inference and diagnosis
(easily adjusted to arbitrary linear functions)
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Outline

Notation and mathematical preliminaries

Weight-balanced matrix formation

Bistochastic matrix formation

Comparisons

Concluding remarks and future directions
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Graph Notation

Digraph G = (V, E)

Nodes (system components) V = {v1, v2, . . . , vN}

Edges (directed communication links) E ⊆ V × V where
(vj , vi ) ∈ E iff node vj can receive information from node vi

In-neighbors N−j = {vi | (vj , vi ) ∈ E}; in-degree D−j = |N−j |

Out-neighbors N+
j = {vl | (vl , vj ) ∈ E}; out-degree D+

j = |N+
j |

Adjacency matrix A: A(j, i) = 1 if (vj , vi ) ∈ E ; A(j, i) = 0 otherwise

Undirected graph: (vj , vi ) ∈ E iff (vi , vj ) ∈ E (bidirectional links)
In undirected graphs, we have (for each node j)
N+

j = N−j and D+
j = D−j = Dj ; also, A = AT

(Strongly) connected (di)graph if for any i, j ∈ V, j 6= i , there exists a
(directed) path connecting them, i.e.,

vi = vi0 → vi1 , vi1 → vi2 , ..., vit−1 → vit = vj
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Weight-Balanced Matrix Formation
The Algorithm (1/2)

Setting: Nodes distributively adjust the weights of their outgoing links
such that the digraph asymptotically becomes weight-balanced; they
observe but cannot set the weights of their incoming links

Each node vj initialize the weights of all of its outgoing links to unity, i.e.,
wlj [0] = 1, ∀vl ∈ N+

j (different initial weights also possible)

Nodes enter an iterative stage where node vj performs the following
steps:

1 It computes its weight imbalance defined by

xj [k ] , S−j [k ]− S+
j [k ] ,

where S−j =
∑

vi∈N
−
j

wji and S+
j =

∑
vl∈N+

j
wlj

2 If xj [k ] is positive (resp. negative), all the weights of its outgoing
links are increased (resp. decreased) by an equal amount and
proportionally to xj [k ], specifically, ∀vi ∈ N+

j ,

wlj [k + 1] = wlj [k ] + βj

(
S−j [k ]

D+
j
− wlj [k ]

)
, βj ∈ (0, 1)
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Weight-Balanced Matrix Formation
The Algorithm (2/2)

Intuition: we compare S−j [k ] with S+
j [k ] = D+

j wlj [k ]. If S+
j [k ] > S−j [k ]

(resp. S+
j [k ] < S−j [k ]), then the algorithm reduces (resp. increases) the

weights on the outgoing links

Proposition 1

If a digraph is strongly connected, the weight balancing algorithm
asymptotically reaches a steady state weight matrix W ∗ that forms a
weight-balanced digraph, with geometric convergence rate equal to
R∞(P) = − ln δ(P), where

Pji ,

{
1− βj , if i = j ,
βj/D+

j , if vi ∈ N−j ,

and δ(P) , max{|λ| : λ ∈ σ(P)), λ 6= 1}
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Weight-Balanced Matrix Formation
Sketch of the Proof (1/2)

Observation: wl′ j = wlj , ∀vl′ , vl ∈ N+
j (because they are equal at

initialization and they are updated in the same fashion)

Hence, we denote the weight on any outgoing link of node vj as wj

We define w = (w1 w2 . . . wn)T with wj = wlj (vl ∈ N+
j )

Then, the evolution of the weights in matrix form is as follows

w [k + 1] = Pw [k ],w [0] = w0 , (1)

where

Pji ,

{
1− βj , if i = j ,
βj/D+

j , if vi ∈ N−j
(2)

The above update equation implies that the weights remain
nonnegative during the execution of the algorithm
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Weight-Balanced Matrix Formation
Sketch of the Proof (2/2)

Matrix P can be written as P = I − B + BD−1A, where I is the identity
matrix, B = diag(βj ), D = diag(D+

j ) and A is the adjacency matrix

Note: P̄ , I − B + AD−1B is column stochastic and therefore ρ(P̄) = 1

With simple algebraic manipulation

ρ(P̄) = ρ(P̄B−1DD−1B) = ρ(D−1BP̄B−1D) = ρ(P) = 1.

Since the digraph is strongly connected for 0 < βj < 1, ∀vj ∈ V, and all
the main diagonal entries are positive, P is primitive

Hence, iteration (1) has a geometric convergence rate

R∞(P) = − ln δ(P) ,

where δ(P) is the second largest of the moduli of the eigenvalues of P
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Weight-Balanced Matrix Formation
Illustrative Example

Example borrowed by [B.Gharesifard & J.Cortés, 2010]

v1 v2

v3 v4

Concerned with the absolute balance defined as

ε[k ] =
n∑

j=1

|xj [k ]|

If weight balance is achieved, then ε[k ] = 0 and
xj [k ] = 0, ∀vj ∈ V
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βj=0.1 for all vj
βj=0.5 for all vj
βj=0.9 for all vj Same W ? for βj = 0.1, 0.5, 0.9

W? =


0 0 0.7143 0.7143

1.4286 0 0 0
0 1.4286 0 0
0 0 0.7143 0



B. Gharesifard and J. Cortés, “When does a digraph admit a doubly stochastic adjacency matrix?” in Proc. of
American Control Conference, 2010.
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Weight-Balanced Matrix Formation
Counterexample

If βj = 1, ∀vj ∈ V, then the weighted adjacency matrix P is not
necessarily primitive

Algorithm does not converge to weights that form a weight-balanced
digraph
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Weight−balancing problem − counterexample
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Algorithm 1 for βj=0.9 for all vj
Algorithm 1 for β1=0.9 and βj=1 for all vj≠ v1
Algorithm 1 for βj=1 for all vj

For the case for which βj = 1, ∀vj ∈ V the matrix is not primitive and the
algorithm does not converge, whereas for the other two cases it
converges
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Conditions for Asymptotic Average Consensus
Bistochastic Matrices

Necessary and sufficient conditions on P for asymptotic average
consensus [Xiao & Boyd, 2004]

1 P has a simple eigenvalue at 1 with left eigenvector
1T = [1 1 . . . 1] and right eigenvector 1 = [1 1 . . . 1]T

2 All other eigenvalues of P have magnitude strictly smaller
than 1

As k →∞, Pk → 1
N 11T which implies that

lim
k→∞

x [k ] =
1
N

11T x [0] =

(∑N
`=1 x`[0]

N

)
1 ≡ x1

Nonnegative pji =⇒ P is primitive bistochastic

How to distributively obtain weights that form a bistochastic matrix?

L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging," Systems and Control Letters, Sept. 2004.
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Bistochastic Matrix Formation
Intuition

Extra requirement: maintain column stochasticity of the weighted
adjacency matrix W [k ] for all times k

Obtain a sequence of column stochastic matrices W [0],W [1], . . . ,W [k ]
such that limk→∞W [k ] = W is bistochastic and thus the iteration

x [k + 1] = W [k ]x [k ], x [0] = x0 ,

reaches average consensus asymptotically
[A.Dominguez-Garcia & C.N.Hadjicostis, 2013]

Digraphs that are weight-balanceable do not necessarily admit a doubly
stochastic assignment [B.Gharesifard & J.Cortés, 2010]

Any strongly connected graph is bistochasticable after adding enough
self-loops [B.Gharesifard & J.Cortés, 2010]

Thus, problem is overcome with the introduction of nonzero self weights
(as long as graph is strongly connected)

A. Dominguez-Garcia and C. N. Hadjicostis, “Distributed matrix scaling and application to average consensus in
directed graphs,” IEEE Transactions on Automatic Control, March 2013.

B. Gharesifard and J. Cortés, “When does a digraph admit a doubly stochastic adjacency matrix?” in Proc. of
American Control Conference,2010.
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Bistochastic Matrix Formation
The Algorithm (1/2)

Each node vj initializes the weights of all of its outgoing links to
wlj [0] = 1/(1 +D+

j ), ∀vl ∈ N+
j (different initial weights also possible)

Nodes enter an iterative stage where node vj

1 Chooses βj [k ] as

βj [k ] =

αj
1−S+

j [k ]

S−j [k ]−S+
j [k ]

, S−j [k ] > S+
j [k ],

αj , otherwise,

where αj ∈ (0, 1)
2 Updates the weights of its outgoing links wlj , ∀vl ∈ N+

j

wlj [k + 1] = wlj [k ] + βj [k ]

(
S−j [k ]

D+
j
− wlj [k ]

)
, βj [k ] ∈ (0, 1)

3 Assigns wjj ≥ 0 so that the weighted adjacency matrix retains its
column stochasticity, i.e.,

wjj [k + 1] = 1−
∑

l∈N+
j

wlj [k + 1], ∀vj ∈ V
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Bistochastic Matrix Formation
The Algorithm (2/2)

Proposition 2

If a digraph is strongly connected, then the bistochastic matrix formation
algorithm reaches a steady state weight matrix W ∗ that forms a bistochastic
digraph; furthermore, the weights of all edges in the graph are nonzero

Proposition 3

If a digraph is strongly connected or is a collection of strongly connected
digraphs, the algorithm with initial condition wlj [0] = 1

m(1+D+
j )

,

∀vl ∈ N+
j ,m ≥ |V|, reaches a steady state weight matrix W ∗ that forms a

bistochastic digraph, with geometric convergence rate equal to
R∞(P) = − ln δ(P), where

Pji [k ] ,

{
1− αj , if i = j ,
αj/D+

j , if i ∈ N−j .

Furthermore, the weights of all edges in the graph are nonzero
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Bistochastic Matrix Formation
Illustrative Example (1/2)

Same as before, with the difference being that self loops are introduced,
i.e., self-weights are also updated

v1 v2

v3 v4

=⇒

v1 v2

v3 v4

The digraph above depicts the update of the self weight with the
introduction of the self-loops at the nodes

The adjacency matrix becomes bistochastible
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Bistochastic Matrix Formation
Illustrative Example (2/2)

Consider a random strongly connected graph consisting of 50 nodes

Quantity of interest: the absolute balance, defined as

Ab[k ] =
∑
vj∈V

∣∣∣∣∣∣∣1−
∑

vi∈N
−
j

wji [k ]

∣∣∣∣∣∣∣
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αj=0.9 for all vj
αj=0.5 for all vj
αj=0.1 for all vj

Asymptotically converges to a bistochastic adjacency matrix for different
values of αj
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Comparisons
Weight-Balanced Matrix Formation
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Algorithm 1
Imbalance−correcting algorithm in [14]
Weight−balancing algorithm in [15]
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Algorithm 1
Imbalance−correcting algorithm in [14]
Weight−balancing algorithm in [15]

[14] B. Gharesifard and J. Cortés, “Distributed strategies for making a digraph weight-balanced,” in Proc. of Allerton
Conference on Communication, Control, and Computing, 2009.

[15] C. N. Hadjicostis and A. Rikos, “Distributed strategies for balancing a weighted digraph,” in Proc. of the 20th
Mediterranean Conference on Control Automation, 2012.
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Comparisons
Bistochastic Matrix Formation
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Algorithm 2 with αj=0.95

Algorithm suggested in [16]
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Algorithm 2 with αj=0.95

Algorithm suggested in [16]

[16] A. Dominguez-Garcia and C. N. Hadjicostis, “Distributed matrix scaling and application to average consensus in
directed graphs,” IEEE Transactions on Automatic Control, March 2013.
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Concluding Remarks and Future Directions
Conclusions:

Proposed a distributed algorithm for forming a weight-balanced matrix

Proposed a distributed algorithm for forming a bistochastic matrix

Weight-balanced matrix formation algorithm admits geometric
convergence rates

Bistochastic matrix formation algorithm probably admits geometric
convergence rates

Rate depends exclusively on the structure of the given digraph and
constant parameters chosen by the nodes

Future work:

Variations of distributed bistochastic matrix formation algorithms that
provably admit geometric convergence rates

Analysis of suggested algorithms in the presence of delays and
changing topology

22 / 23



Thank You!

Questions?
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