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Weight-balanced digraph:
Sum of weights on incoming links = Sum of weights on outgoing links
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Distributed Formation of Balanced and Bistochastic Weighted
Digraphs in Multi-Agent Systems

Weight-balanced digraph:
Sum of weights on incoming links = Sum of weights on outgoing links

Bistochastic (doubly stochastic) digraph:
Sum of weights on incoming links = Sum of weights on outgoing links = 1

4
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@ Weight-balanced matrix formation
@ Synchronization

@ Average consensus via linear iterations for continuous-time
systems (special case of synchronization without dynamics)

@ Applications where weight balance plays a key role:
@ Traffic-flow problems captured by n junctions and m one-way
streets

@ Stable flocking of agents with significant inertial effects
@ Pinning control, optoelectronics, biology, ...

@ Related to weights that form a bistochastic matrix

@ Bistochastic matrix formation

@ Average consensus via linear iterations in discrete-time systems -
applications in multicomponent systems where one is interested in
distributively averaging measurements, e.g., sensor networks,
environmental monitoring



Introduction
Distributed System Model

@ Distributed systems conveniently captured by digraphs

@ Components represented by vertices (nodes)
@ Communication and sensing links represented by edges

oD

®

@ Consider a network with nodes (vi, v2, ..., W)
E.g., sensors, robots, unmanned vehicles, resources, etc.

@)

@ Nodes can receive information according to (possibly directed)
communication links

@ Each node v; has some initial value x;[0] (could be belief, position,
velocity, etc.)



Consensus and Average Consensus

@ Typical objective: Calculate functions of initial values in a distributed
manner (e.g., max.{x.[0]}, >, x£[0], etc.)

@ Consensus: All nodes calculate (in a distributed manner, each time
using only local information) same function of initial values x1[0], x2[0],
. XN[O]

@ Average Consensus: All nodes calculate (in a distributed manner) the
average X = « 2’11 x¢[0] (where N is the number of nodes)

@ Possible centralized strategy: Route all values to a single entity (leading
node) who then determines the function value (e.g., average) and
routes it back to the nodes

@ Average serves as primitive for estimation, inference and diagnosis
(easily adjusted to arbitrary linear functions)



@ Notation and mathematical preliminaries
@ Weight-balanced matrix formation

@ Bistochastic matrix formation

@ Comparisons

@ Concluding remarks and future directions



Graph Notation

@ Digraph G = (V,€)
@ Nodes (system components) V = {vy, va,..., Vn}

Edges (directed communication links) £ C V x V where
(v;, vi) € € iff node v; can receive information from node v;

@ In-neighbors N;™ = {v; | (v;, vi) € £};in-degree D; = [N |
@ Out-neighbors N;" = {vi | (v, ) € £}; out-degree D} = [N}
@ Adjacency matrix A: A(j, i) = 1if (v;, vi) € &€; A(Jj, i) = 0 otherwise

@ Undirected graph: (v;, vi) € £ iff (v, v;) € £ (bidirectional links)
In undirected graphs, we have (for each node j)
N' =N, and D} =D; =D;;also, A= AT

@ (Strongly) connected (di)graph if for any i,j € V, j # i, there exists a
(directed) path connecting them, i.e.,

Vi=Vi = Vi, Vi = Vs s Vi = Vi =Y
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Weight-Balanced Matrix Formation

The Algorithm (1/2)

@ Setting: Nodes distributively adjust the weights of their outgoing links
such that the digraph asymptotically becomes weight-balanced; they
observe but cannot set the weights of their incoming links

@ Each node v; initialize the weights of all of its outgoing links to unity, i.e.,
w;[0] = 1, Vv, € N}" (different initial weights also possible)

@ Nodes enter an iterative stage where node v; performs the following
steps:
@ It computes its weight imbalance defined by
X[k £ S [k] - S[K],
where S = Evie/\ff wj and S = Ev/eN,* W
Qi Xj[K] is positive (resp. negative), all the weights of its outgoing
links are increased (resp. decreased) by an equal amount and
proportionally to x;[k], specifically, Vv; € /\/}*,
S; [K]
wilk + 1] = wylk] + 5 | =5 —wilkl |, 5 € (0,1)

J



Weight-Balanced Matrix Formation

The Algorithm (2/2)

@ |Intuition: we compare S;”[k] with S"[k] = D;" wy[k]. If S{"[k] > S;"[K]
(resp. S/'[k] < S, [K]), then the algorithm reduces (resp. increases) the
weights on the outgoing links

Proposition 1

If a digraph is strongly connected, the weight balancing algorithm
asymptotically reaches a steady state weight matrix W* that forms a
weight-balanced digraph, with geometric convergence rate equal to
R~ (P) = —In4(P), where

p o185, ifi=]
" B/Df, ifvieNT,

and 5(P) £ max{|| : A € o(P)), A # 1}




Weight-Balanced Matrix Formation

Sketch of the Proof (1/2)

@ Observation: wyj = wy, Vvy, v € N]* (because they are equal at
initialization and they are updated in the same fashion)

@ Hence, we denote the weight on any outgoing link of node v; as w;
@ Wedefinew = (ws wa ... wy)" with w; = w; (v, € N})

@ Then, the evolution of the weights in matrix form is as follows

wlk + 1] = Pw[k], w[0] = wo , (1)
where
L f1-p, ifi=]
i {@-/D,ﬂ v e A @

@ The above update equation implies that the weights remain
nonnegative during the execution of the algorithm
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Weight-Balanced Matrix Formation

Sketch of the Proof (2/2)

@ Matrix P can be written as P = /| — B+ BD~'A, where | is the identity
matrix, B = diag(5;), D = diag(Dj*) and A is the adjacency matrix

@ Note: P2 | — B+ AD~ "B is column stochastic and therefore p(P) = 1
@ With simple algebraic manipulation
p(P) = p(PB~'DD™'B) = p(D"'BPB™'D) = p(P) = 1.

@ Since the digraph is strongly connected for 0 < g; < 1, Vv; € V, and all
the main diagonal entries are positive, P is primitive

@ Hence, iteration (1) has a geometric convergence rate
R (P)=—=1Iné(P),

where 6(P) is the second largest of the moduli of the eigenvalues of P
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Weight-Balanced Matrix Formation

lllustrative Example

@ Example borrowed by [B.Gharesifard & J.Cortés, 2010]

© ® @ Concerned with the absolute balance defined as
n
elk] = > Ix[K]|
j=1
® o If weight balance is achieved, then e[k] = 0 and
X[kl =0,Vv; €V
Weight-balancing with Algorithm 1 for different values of ﬁl
05 AA,ﬁwAanw
0.4 S [X‘415|0ral\vl
g ---heoerely | @ Same W™ for 5 =0.1,0.5, 0.9
Soaf! 4
§02 | 0 0 0.7143  0.7143
g W _ | 1-4286 0 0 0
< o4 =] o0 1.4286 0 0
‘ . 0 0 0.7143 0
% 0 20 30 40 50

Number of iterations

B. Gharesifard and J. Cortés, “When does a digraph admit a doubly stochastic adjacency matrix?” in Proc. of
American Control Conference, 2010.
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Weight-Balanced Matrix Formation

Counterexample

@ If ; =1,Vy; € V, then the weighted adjacency matrix P is not
necessarily primitive

@ Algorithm does not converge to weights that form a weight-balanced
digraph

Weight-balancing problem — counterexample

Algorithm 1 for ﬁ‘=0.9 for all v‘
_ _ _ Algorithm 1 for ﬁ‘=0,9 and ﬁl=1 for all vls vy
_— Algorithm 1 for BA=1 for all vA

®

@

Absolute balance

@ ] 10 20 30 40 50
Number of iterations

@ For the case for which g; = 1, Vv; € V the matrix is not primitive and the
algorithm does not converge, whereas for the other two cases it

converges
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Conditions for Asymptotic Average Consensus

Bistochastic Matrices

@ Necessary and sufficient conditions on P for asymptotic average
consensus [Xiao & Boyd, 2004]

@ P has a simple eigenvalue at 1 with left eigenvector
1" =[11 ... 1] and right eigenvector 1 =[11 ... 1]7
@ All other eigenvalues of P have magnitude strictly smaller
than 1

@ As k — oo, P — 1117 which implies that

J&HH_LHWM—<Z%fMU1EM

@ Nonnegative p; = P is primitive bistochastic

How to distributively obtain weights that form a bistochastic matrix? J

L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging," Systems and Control Letters, Sept. 2004.
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Bistochastic Matrix Formation

Intuition

@ Extra requirement: maintain column stochasticity of the weighted
adjacency matrix W[k] for all times k

@ Obtain a sequence of column stochastic matrices W[0], W[1],..., WIK]
such that limx_, . W[k] = W is bistochastic and thus the iteration

x[k + 1] = W[k]x[k], x[0] =xo,

reaches average consensus asymptotically
[A.Dominguez-Garcia & C.N.Hadjicostis, 2013]

@ Digraphs that are weight-balanceable do not necessarily admit a doubly
stochastic assignment [B.Gharesifard & J.Cortés, 2010]

@ Any strongly connected graph is bistochasticable after adding enough
self-loops [B.Gharesifard & J.Cortés, 2010]

@ Thus, problem is overcome with the introduction of nonzero self weights
(as long as graph is strongly connected)

A. Dominguez-Garcia and C. N. Hadjicostis, “Distributed matrix scaling and application to average consensus in
directed graphs,” IEEE Transactions on Automatic Control, March 2013.

B. Gharesifard and J. Cortés, “When does a digraph admit a doubly stochastic adjacency matrix?” in Proc. of
American Control Conference,2010.
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Bistochastic Matrix Formation

The Algorithm (1/2)

@ Each node v; initializes the weights of all of its outgoing links to
wy[0] =1/(1 + Df), Vv € J\/j+ (different initial weights also possible)

@ Nodes enter an iterative stage where node v;
@ Chooses gj[K] as

1-S/[K] B
sk = 4 5-swe S K> SR
Qs otherwise,
where o; € (0,1)
© Updates the weights of its outgoing links wj, ¥vi € A}

wilk + 1] = wlk] + BK] <_”
/

W//[K]> pilkl € (0,1)

© Assigns w; > 0 so that the weighted adjacency matrix retains its
column stochasticity, i.e.,
wilk +11=1- Y wlk+1], vy €V
/e/\/j+
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Bistochastic Matrix Formation
The Algorithm (2/2)

Proposition 2

If a digraph is strongly connected, then the bistochastic matrix formation
algorithm reaches a steady state weight matrix W™ that forms a bistochastic
digraph; furthermore, the weights of all edges in the graph are nonzero

| \

Proposition 3

If a digraph is strongly connected or is a collection of strongly connected

digraphs, the algorithm with initial condition w;[0] = m,
J

Vv, € /\//+ ,m > |V|, reaches a steady state weight matrix W* that forms a
bistochastic digraph, with geometric convergence rate equal to
R (P) = —In4(P), where

1—qj, ifi=j
Pilk] £ " ’
ilkl {a,-/pf, ifieN .

Furthermore, the weights of all edges in the graph are nonzero
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Bistochastic Matrix Formation

lllustrative Example (1/2)

@ Same as before, with the difference being that self loops are introduced,
i.e., self-weights are also updated

@ ® (® @)
® (® @)

@ The digraph above depicts the update of the self weight with the
introduction of the self-loops at the nodes

@ The adjacency matrix becomes bistochastible
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Bistochastic Matrix Formation

lllustrative Example (2/2)

@ Consider a random strongly connected graph consisting of 50 nodes
@ Quantity of interest: the absolute balance, defined as
AblKI =Y "1 = > wlK]
erv V,'E,'\/'jf

Bistochastic matrix formation for a random graph of 50 nodes for various values of 9

.=0.9 for all \lA
012}, - _az0sforaly
\ _ _ a=0.1forallv
oah ; ]
o O
3
s
3 0.08 i
K
2
S 006 i
2
2
2
< i

e
o
2

0.021

40 50 60 70 80 20 100
Number of iterations

@ Asymptotically converges to a bistochastic adjacency matrix for different
values of q;
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Comparisons

Weight-Balanced Matrix Formation

Absolute balance vs Iteration for a random graph of 50 nodes

250 T T
~— Algorithm 1

o 200 ~ ~ ~ Imbalance-correcting algorithm in [14]
2 | ~ ~ Weight—balancing algorithm in [15]
5
8 150 1
@
3
2 100 1
<

50 4

0 S,
0 20 30 40 50 60 70 80 90 100

Number of iterations
Absolute balance vs Iteration for a 1000 graphs of 50 nodes

200 T T T T
— Algorithm 1
- - ~ Imbalance-correcting algorithm in [14]
g 150 ~ ~ Weight-balancing algorithm in [15]
©
S
£ 100 B
°
2
8
<
50 1
0 P
0 40 50 60 70 80 20 100

Number of iterations

[14] B. Gharesifard and J. Cortés, “Distributed strategies for making a digraph weight-balanced,” in Proc. of Allerton
Conference on Communication, Control, and Computing, 2009.

[15] C. N. Hadjicostis and A. Rikos, “Distributed strategies for balancing a weighted digraph,” in Proc. of the 20th
Mediterranean Conference on Control Automation, 2012.
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Comparisons

Bistochastic Matrix Formation

Absolute balance vs Iteration for a random graph of 50 nodes

0.25 T
— Algorithm 2 with @=0.95

o 02 ~ ~ ~ Algorithm suggested in [16]

<
= 4
L

S

°

] 4
3

<

E— . - n n
40 50 60 70 80 920 100
Number of iterations
0.25 Absolute balance vs Iteration for a 1000 graphs of 50 nodes
’ Algorithm 2 with ¢,=0.95

3 ~ ~ ~ Algorithm suggested in [16]
s

©

= 4
o

3

°

[ 4
k]

<

40 50 60 70 80 920 100
Number of iterations

[16] A. Dominguez-Garcia and C. N. Hadjicostis, “Distributed matrix scaling and application to average consensus in
directed graphs,” IEEE Transactions on Automatic Control, March 2013.
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Concluding Remarks and Future Directions

Conclusions:
@ Proposed a distributed algorithm for forming a weight-balanced matrix
@ Proposed a distributed algorithm for forming a bistochastic matrix

@ Weight-balanced matrix formation algorithm admits geometric
convergence rates

@ Bistochastic matrix formation algorithm probably admits geometric
convergence rates

@ Rate depends exclusively on the structure of the given digraph and
constant parameters chosen by the nodes

Future work:

@ Variations of distributed bistochastic matrix formation algorithms that
provably admit geometric convergence rates

@ Analysis of suggested algorithms in the presence of delays and
changing topology
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Thank You!

.
ﬂ{i

Questions?
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